A PARABOLIC REGULARIZATION PROPERTY
OF \textit{p–LOGARITHMIC SOBOLEV GENERATORS}

Gabriele Grillo

Abstract. Let \(N \) be a Riemannian manifold, \(M \subset N \) be a domain with smooth boundary, \(\mu \) a positive measure on \(M \) such that \(M \) has unit \(\mu \)–volume. Consider the evolution driven by the \(p–\text{Laplace–type operator (} p > 2 \text{)} \) associated to the natural \(p–\text{energy functional} \) \(E^{(p)} \) constructed from \(\mu \), homogeneous Dirichlet boundary conditions on \(\partial M \) being assumed. Assume that a single suitable logarithmic inequality holds for \(E^{(p)} \). Then we show that the evolution brings any data belonging to the natural domain of the evolution instantaneously into \(L^q \) for any \(q > 2 \), with quantitative bounds on the \(L^q \) norms.

Mathematics subject classification (2000): 47H20, 35K55, 58J35.

Keywords and phrases: \(p–\text{Laplacian, nonlinear evolutions on manifolds, logarithmic Sobolev inequality, contractivity properties.} \)

REFERENCES

[1] C. A
 n