EXISTENCE OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS WITH SOBOLEV CRITICAL EXPOIENTS

Xiaoyan Cao and Zuodong Yang

Abstract. In this paper, we consider the existence of positive solutions to the following problem

\[
\begin{align*}
-\text{div}(|\nabla u|^{p-2}\nabla u) &= \frac{\partial F}{\partial u}(u,v) + \varepsilon^{p-1}g(x) \quad \text{in} \ \Omega, \\
-\text{div}(|\nabla v|^{q-2}\nabla v) &= \frac{\partial F}{\partial v}(u,v) + \varepsilon^{q-1}h(x) \quad \text{in} \ \Omega, \\
u, v &> 0 \quad \text{in} \ \Omega, \\
u = v = 0 \quad \text{on} \ \partial\Omega,
\end{align*}
\]

where \(\Omega\) is a bounded smooth domain in \(\mathbb{R}^N\); \(F \in C^1((\mathbb{R}^+)^2,\mathbb{R}^+)\) is positively homogeneous of degree \(\mu\); \(g, h \in C^1(\Omega)\setminus\{0\}\); and \(\varepsilon\) is a positive parameter. Using sub-supersolution method and comparison principle, we prove the existence of positive solutions for the above problem.

Keywords and phrases: elliptic systems, subsolutions, supersolutions, comparison principle.

REFERENCES

[34] L. K. Martinson and K. B. Pavlov, Unsteady shear flows of a conducting fluid with a rheological power law, Magnitnaya Gidrodinamika, 2 (1971), 50–58.

