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SOME RESULTS ABOUT A QUASILINEAR
SINGULAR PARABOLIC EQUATION

MEHDI BADRA, KAUSHIK BAL AND JACQUES GIACOMONI

Abstract. We investigate the following quasilinear parabolic and singular equation,

1
Uy —Apu=—+f(xu) in (0,T) x Q,
u
u=00on(0,T)xdQ, u>0in (0,T)xQ, (Pr)
u(0,x) = up(x) in Q,
where Q is an open bounded domain with smooth boundary in RN, 1 < p <, 0 < § and

T > 0. We assume that (x,s) € Q x Rt — f(x,s) is a bounded below Caratheodory function,
asymptotically sub-homogeneous, i.e.

t
if p<2, Oélimsup% =0y < M(Q),
e ©.1)
. . flor)
it p>2, Ogllmsupf—aj < oo,
1—>+foo

(where A1(Q) is the first eigenvalue of —A, in Q with homogeneous Dirichlet boundary con-
ditions) and ug € Wol‘p(Q). Then, for any 0 € (0,1), we prove for any T > 0 the existence of
a weak solution u € V(Qr) to (Py). The proof involves a semi-discretization in time approach
and the study of the stationary problem associated to (P;). The key points in the proof is to
show that the approximated solutions remain (uniformly) positive in any compact K of Q and
from energy estimates converges to a weak solution to (P;). Next, under additional assumptions
on the initial data, & and the nonlinearity f, we prove long time convergence of global weak
solutions in WOl "’(Q). This stabilization property is established by proving an additional energy
estimate and by using the regularity result in Simon [23]. These results extend with a different
approach a previous work of the authors ([3]) regarding the problem (P;) where existence and
uniqueness of solutions are proved under a cone condition on the initial data and via the theory
of nonlinear accretive operators.
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