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DETAILED STUDY OF BIFURCATIONS IN AN

EPIDEMIC MODEL ON A DYNAMIC NETWORK

ANDRÁS SZABÓ, PÉTER L. SIMON AND ISTVAN Z. KISS

Abstract. The bifurcations in a four-variable ODE model of an SIS type epidemic on an adaptive
network are studied. The model describes the propagation of the epidemic on a network where
links (or edges) of different type (i.e. SI,II and SS ) can be activated or deleted according to a
simple rule consisting of random link activation and deletion. In the case when II links cannot
be neither deleted nor created it is proved that the system can have at most three steady states
with the trivial, disease-free steady state being one of them. It is shown that a stable endemic
steady state can appear through a transcritical bifurcation, or a stable and an unstable endemic
steady state arise as a result of saddle-node bifurcation. Moreover, at the endemic steady state
a Hopf bifurcation may occur giving rise to stable oscillation. The bifurcation curves in the
parameter space are determined analytically using the parametric representation method. For
certain parameter regimes or bifurcation types, analytical results based on the ODE model show
good agreement when compared to results based on individual-based network simulations. When
agreement between the two modelling approaches holds, the ODE-based model provides a faster
and more reliable tool that can be used to explore full spectrum of model behaviour.
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