

EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A p(x)-LAPLACIAN EQUATION WITH NONLINEAR BOUNDARY CONDITION ON UNBOUNDED DOMAIN

QIAO LIU AND DUCHAO LIU

Abstract. We study the existence and multiplicity of positive solutions for the nonlinear boundary value problems involving the p(x)-Laplacian of the form

$$\begin{cases} -\operatorname{div}(a(x)|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u) & \text{in } \Omega \subset \mathbb{R}^N, \\ a(x)|\nabla u|^{p(x)-2}\frac{\partial u}{\partial v} = g(x,u) & \text{on } \Gamma = \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is an unbounded domain with non-compact, smooth boundary $\Gamma = \partial \Omega$, $p \in C^{0,1}(\Omega)$ and $1 < p^- \leqslant p(x) \leqslant p^+ < N$, a,b are suitable weights. By using the variational methods, we prove that there exist multiple solutions provided f and g are given appropriate assumptions.

Mathematics subject classification (2010): 35J35,35J40,35J67,35J70.

Keywords and phrases: p(x)-Laplacian equation, nonlinear boundary, weighted variable exponent Lebesgue space, weighted variable exponent Sobolev space, variational method.

REFERENCES

- [1] R.A. ADAMS AND J.F. FOURNIER, Sobolev space, second edition, Academic Press, (2003).
- [2] J. GARCIA-AZORERO, I. PERAL AND I.D. ROSSI, A convex-concave problem with a nonlinear bounbary condition, J. Differential Equations, 198 (2004), 91–128.
- [3] P. AMSTER, M.C. MARIANI AND O. MENDEZ, *Nonlinear boundary conditions for elliptic equations*, Electron. J. Differential Equations, **2005** (2005), No. 144, 1–8.
- [4] J.F. BOUNDER AND J.D. ROSSI, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001), 195–223.
- [5] A.C. CAVALHEIRO, Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations, Applied Math. Lettles, 17 (2004), 387–391.
- [6] F. CÎRSTEA, D. MOTREANU AND V. RĂDULESCU, Weak solution of quasilinear problems with nonlinear boundary condition, Nonlinear Anal., 43 (2001), 623–636.
- [7] F. CÎRSTEA AND V. RĂDULESCU, Existence and Non-existence Results for a Quasilinear Problem with Nonlinear Boundary Condition, J. Math. Anal. Appl., 244 (2000), 169–183.
- [8] X.L. FAN AND D. ZHAO, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., **263** (2001), 424–446.
- [9] X.L. FAN AND Q.H. ZHANG, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., **52** (2003), 1843–1852.
- [10] X.L. FAN, Solutions for p(x)-Laplacian Dirichlet problems with Singular coefficients, J. Math. Anal. Appl., **312** (2005), 464–477.
- [11] X.L. FAN AND S. G. DENG, Multiplicity of Positive Solutions for a Class of Inhomogeneous Neumann Problems Involving the p(x)-Laplacian, Nonlinear differ. equ. appl., 16, 1 (2009), 255–271.
- [12] D.A. KANDILAKIS, A Multiplicity Result For Quasilinear Problems With Convex and Concave Nonlinearities and Nonlinear Boundary Conditions In Unbounded Domains, Electron. J. Differential Equations, 57 (2005), 1–12.

- [13] D.A. KANDILAKIS AND A.N. LYDEROPOULOS, Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearites on unbounded domains, J. Differential Equations, 230 (2006), 337–361.
- [14] O. KOVÁČIK AND J. RÁKOSNÍK, On the Spaces $L^{p(x)}$ and $W^{m,p(x)}$, Czechoslovak Math. J., 41 (1991), 592–618.
- [15] Q. Liu, Compact Trace in Weighted Variable Exponent Sobolev Spaces $W^{1,p(x)}(\Omega; v_0, v_1)$, J. Math. Anal. Appl., **348** (2008), 760–774.
- [16] W. LIU AND P. ZHAO, Existence of positive solutions for p(x)-Laplacian equations in unbounded domains, Nonlinear Anal., 69 (2008), 3358–3371.
- [17] C.V. PAO, Nonlinear parabolic and elliptic equations, Plenum Press, New York, London, (1992).
- [18] K. PFLÜGER, Semilinear elliptic problems with nonlinear boundary conditions in unbounded domains, Z. Anal. Anwend., 14 (1995), 829–851.
- [19] K. PFLÜGER, Nonlinear boundary value problems in Weighted Sobolev spaces, Nonlinear Anal., 30 (1997), 1263–1270.
- [20] K. PFLÜGER, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differential Equations, 10 (1998), 1–13.
- [21] M. Ruùžička, Electrorheological Fluids Modeling and Mathematical Theory, Springer, (2000).
- [22] M. STRUWE, Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag Berlin (1990).
- [23] M. WILLEM, Minimax Theorems, Birkhäuser, Boston (1996).
- [24] J.H. YAO, Solutions for Neumann boundary value problems invoving p(x)-Laplace operators, Nonlinear Anal., **68** (2008), 1271–1283.
- [25] J.H. ZHAO AND P.H. ZHAO, Infinitely many weak solutions for a p-Laplacian equation with nonlinear boundary conditions, Electron. J. Differential Equations, 90 (2007), 1–14.
- [26] J.H. ZHAO AND P.H. ZHAO, Existence of infinitely many weak solutions for the p-Laplacian with nonlinear boundary conditions, Nonlinear Anal., 69 (2008), 1343–1355.
- [27] Q.H. ZHANG, Existence of radial solution for p(x)-Laplacian equation in R^N, J. Math. Anal. Appl., 315 (2006), 506–516.
- [28] V.V. ZHIKOV, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 9 (1987), 33–66.