EXISTENCE RESULT OF POSITIVE SOLUTION FOR BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER WITH INTEGRO–DIFFERENTIAL BOUNDARY CONDITIONS

Yousef Gholami

Abstract. In this paper we study the following fractional boundary value problem with integro-differential boundary conditions

\[
\begin{aligned}
D^{\alpha}_0 u(t) - f(t,u(t),D^{\alpha-1}_0 u(t),D^{1-\alpha}_0 u(t)) &= 0, \quad t \in [0,T], \quad n - 1 \leq \alpha < n, \\
u^{(j)}(0) &= 0, \quad D^{\alpha-1}_0 u(T) + \int_0^T u(\omega)d\omega + \sum_{i=1}^{m-2} \beta_i u(\xi_i) = 0, \quad j = 0, \ldots, n - 2, \\
0 < \xi_i < \xi_{i+1} < T, \quad \beta_i \in [0,\infty), \quad i = 1,2,\ldots,m-2, \quad n \in \mathbb{N} \setminus \{1\}, \\
T > 0,
\end{aligned}
\]

where $D^{\alpha}_0, D^{\alpha-1}_0$ represent the standard Riemann-Liouville fractional derivative of order α. The main result includes some interesting fixed point and functional analysis techniques to obtain claimed existence result.

Mathematics subject classification (2010): fractional derivative, generalized boundary conditions, positive solutions, fixed point theory.

Keywords and phrases: 34A08, 34B18, 47H10.

REFERENCES

