STABILITY RESULTS OF SOME ABSTRACT EVOLUTION EQUATIONS

N.S. HOANG

Abstract. The stability of the solution to the equation $\dot{u}=A(t)u+G(t,u)+f(t)$, $t\geqslant 0$, $u(0)=u_0$ is studied. Here A(t) is a linear operator in a Hilbert space H and G(t,u) is a nonlinear operator in H for any fixed $t\geqslant 0$. We assume that $\|G(t,u)\|\leqslant \alpha(t)\|u\|^p$, p>1, and the spectrum of A(t) lies in the half-plane $\text{Re}\,\lambda\leqslant\gamma(t)$ where $\gamma(t)$ can take positive and negative values. We proved that the equilibrium solution $u(t)\equiv 0$ to the equation is Lyapunov stable under persistantly acting perturbations f(t) if $\sup_{t\geqslant 0}\int_0^t\gamma(\xi)\,d\xi<\infty$ and $\int_0^\infty\alpha(\xi)\,d\xi<\infty$. In addition, if $\int_0^t\gamma(\xi)\,d\xi\to-\infty$ as $t\to\infty$, then we proved that the equilibrium solution $u(t)\equiv 0$ is asymptotically stable under persistantly acting perturbations f(t). Sufficient conditions for the solution u(t) to be bounded and for $\lim_{t\to\infty}u(t)=0$ are proposed and justified.

Mathematics subject classification (2010): 34G20, 37L05, 44J05, 47J35. *Keywords and phrases*: evolution equations, stability, Lyapunov stable, asymptotically stable.

REFERENCES

- L. CESARI, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer-Verlag, Berlin, 1963.
- [2] E. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGrawHill, NewYork, 1955.
- [3] Y. DALECKII AND M. KREIN, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, RI, 1974.
- [4] B. DEMIDOVICH, Lectures on Mathematical Theory of Stability, Nauka: Moscow, 1967. (in Russian)
- [5] P. HARTMAN, Ordinary Differential Equations, Wiley, NewYork, 1964.
- [6] A. LYAPUNOV, Collected Works, II. Acad. Sci., Moscow, 1954. (in Russian)
- [7] A. G. RAMM AND N. S. HOANG, Dynamical Systems Method and Applications, Theoretical Developments and Numerical examples, Wiley, Hoboken, 2012.
- [8] A. G. RAMM, Asymptotic stability of solutions to abstract differential equations, J. Abstr. Differ. Equ. Appl., 1 (2010), N1, 27–34.
- [9] A. G. RAMM, Stability of solutions to some evolution problems, Chaotic Modeling and Simulation (CMSIM), 1 (2011), 17–27.
- [10] A. G. RAMM, A stability result for abstract evolution problems, Math. Meth. Appl. Sci., 36 (2012), N4, 422–426.
- [11] A. G. RAMM, Stability of the solutions to evolution problems, *Mathematics*, 1 (2013), 46–64.
- [12] A. G. RAMM, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523–527.
- [13] R. TEMAM, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, NewYork, 1997.

