

ZEROS' DISTRIBUTION OF THE FIRST KIND BESSEL FUNCTIONS

CHENG-HSIUNG HSU AND CHI-RU YANG

Abstract. The aim of this paper is to investigate the zeros' distribution of the first kind Bessel functions $J_{\nu}(z)$ of order $\nu \geqslant 1$. The problem arises from the conjecture given by the work [8] which considered the existence of smooth solutions for one-dimensional compressible Euler equation with gravity. In this article we show that $J_{\nu}(L\theta) \neq 0$ for any integer $L \geqslant 2$ provided that $J_{\nu}(\theta) = 0$, $\nu \geqslant 1$ and θ is sufficiently large. Moreover, if ν is half of an odd integer, we can remove the restriction of large θ and show that $J_{\nu}(L\theta) \neq 0$ for any integer $L \geqslant 2$.

Mathematics subject classification (2010): 33C10, 34A99.

Keywords and phrases: Bessel function, Siegel's theorem, Nash-Moser Theorem.

REFERENCES

- L.D. ABREU, F. MARCELLAN AND S.B. YAKUBOVICH, Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case, *Journal of Mathematical Analysis and Appli*cations, 341 (2008), 803–812.
- [2] R. COURANT AND K. O. FRIEDRICHS, Supersonic Flow and Shock Waves. Interscience, New York, 1948.
- [3] A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, *Journal of Computational and Applied Mathematics*, **133** (2001), 65–83.
- [4] W.J. FREEMANA, A. CAPOLUPO, R. KOZMA, A. OLIVARES DEL CAMPO AND G. VITIELLO, Bessel functions in mass action. Modeling of memories and remembrances, *Physics Letters A*, 379 (2015), 2198–2208.
- [5] R. HAMILTON, The inverse function theorem of Nash and Moser, Bulletin of the American Mathematical Society, 7 (1982), 65–222.
- [6] C.-H. HSU, S.-S. LIN AND T. MAKINO, Periodic solutions to the 1-dimensional compressible Euler equation with gravity, *Hyperbolic Problems-theory*, *Numerics and Applications*, Yokohama Publishers, (2006),163–170.
- [7] C.-H. HSU, S.-S. LIN AND T. MAKINO, Smooth solutions to a class of quasilinear wave equations, Journal of Differential Equations, 224 (2006), 229–257.
- [8] C.-H. HSU, S.-S. LIN AND C.-R. YANG, Smooth solutions of one-dimensional compressible Euler equation with gravity, *Journal of Differential Equations*, **260** (2016), 708–732.
- [9] M. E. MULDOON, Electrostatics and zeros of Bessel functions, *Journal of Computational and Applied Mathematics*, 65 (1995), 299–308.
- [10] J. SEGURA AND A. GIL, ELF and GNOME: two tiny codes to evaluate the real zeros of the Bessel functions of the first kind for real orders, Computer Physics Communications, 117 (1999), 250.
- [11] G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1958.

