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PATTERNS IN A BALANCED BISTABLE EQUATION WITH

HETEROGENEOUS ENVIRONMENTS ON SURFACES OF REVOLUTION
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Abstract. We use the variational concept of I'-convergence to obtain sufficient conditions that
guarantee existence, stability and the geometric structure of four families of stationary solutions
to the singularly perturbed parabolic equation d,ue = £>Aue + f(ue,x) on surfaces of revolution.
We consider the bistable function f(u,x) = —(u—a(x))(u —b(x))(u— c(x)) and the conditions
found relate the functions a,b,c to the geometry of the surface where such functions are defined.
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