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Abstract. Motivated mainly by the localization over an open bounded set Ω of R
n of solutions

of the Schrödinger equations, we consider the Schrödinger equation over Ω with a very singular
potential V (x) � Cd(x,∂Ω)−r with r � 2 and a convective flow �U . We prove the existence
and uniqueness of a very weak solution of the equation, when the right hand side datum f (x)
is in L1(Ω,d(·,∂Ω)) , even if no boundary condition is a priori prescribed. We prove that, in
fact, the solution necessarily satisfies (in a suitable way) the Dirichlet condition u = 0 on ∂Ω .
These results improve some of the results of the previous paper by the authors in collaboration
with Roger Temam. In addition, we prove some new results dealing with the m -accretivity
in L1(Ω,d(·,∂Ω)α ) , where α ∈ [0,1] , of the associated operator, the corresponding parabolic
problem and the study of the complex evolution Schrödinger equation in R

n .
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