
D ifferential
Equations

& Applications

Volume 11, Number 2 (2019), 291–305 doi:10.7153/dea-2019-11-12

PROGRESSIVE CONTRACTIONS, MEASURES OF

NON–COMPACTNESS AND QUADRATIC INTEGRAL EQUATIONS

T. A. BURTON AND I. K. PURNARAS

Abstract. Classical fixed point theorems often begin with the assumption that we have a mapping
P of a non-empty, closed, bounded, convex set G in a Banach space into itself. Then a number
of conditions are added which will ensure that there is at least one fixed point in the set G .
These fixed point theorems have been very effective with many problems in applied mathematics,
particularly for integral equations containing a term

∫ t

0
A(t− s)v(t,s,x(s))ds,

because such terms frequently map sets of bounded continuous functions into compact sets. But
there is a large and important class of integral equations from applied mathematics containing
such a term with a coefficient function f (t,x) which destroys all compactness. Investigators have
then turned to Darbo’s fixed point theorem and measures of non-compactness to get a (possibly
non-unique) fixed point. In this paper:

a) We offer an elementary alternative to measures of non-compactness and Darbo’s theo-
rem by using progressive contractions. This method yields a unique fixed point (unlike Darbo’s
theorem) which, in turn, by default yields asymptotic stability as introduced in [1].

b) We lift the growth requirements in both x and t seen using Darbo’s theorem.
c) We offer a technique for finding the mapping set G .
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