AN EFFICIENT HEAT PROBLEM

T. A. BURTON

Abstract. By means of fixed point theory we study properties of solutions of a Volterra integral heat equation
\[x(t) = a(t) - \int_0^t A(t-s)f(s,x(s))ds \]
by first mapping it into
\[x(t) = z(t) + \int_0^t R(t-s)\left[x(s) - \frac{f(s,x(s))}{J}\right]ds \]
where
\[z(t) = a(t) - \int_0^t R(t-s)a(s)ds, \]
\(R \) is the resolvent of \(JA \), \(J \) is a large positive number, and \(f \) is bounded.

It turns out that the linear part
\[x(t) = z(t) + \int_0^t R(t-s)x(s)ds \]
has a unique fixed point which is a uniformly good approximation of a fixed point for the non-linear equation.

The objective is to obtain conditions under which the heat applied by \(a(t) \) concentrates on the solution \(x(t) \).

Mathematics subject classification (2020): 34A08, 34A12, 45D05, 45G05, 47H10.
Keywords and phrases: Volterra, fixed point theory, transformation.

REFERENCES