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ITERATIVE SCHEMES FOR SOLVING

GENERAL VARIATIONAL INEQUALITIES
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Abstract. In this paper, we consider a new class of variational inequalities involving two opera-
tors, which is called the general variational inequality. We have shown that the general variational
inequalities are equivalent to the fixed point problem using the projection technique. This equiv-
alent fixed point formulation is used to discuss the existence of solution as well as to investigate
several iterative methods for solving general variational inequalities. Some applications of the
associated dynamical system coupled with finite difference are explored. Convergence analy-
sis of the proposed methods is considered under suitable conditions. Since general variational
inequalities include the variational inequalities, complementarity problems and nonlinear equa-
tions as special cases, our results continued to hold for these problems. The techniques and ideas
of this paper be starting point for the future research.
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