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ELASTICITY FOR ECONOMIC PROCESSES WITH MEMORY:

FRACTIONAL DIFFERENTIAL CALCULUS APPROACH

VALENTINA V. TARASOVA AND VASILY E. TARASOV

Abstract. Derivatives of non-integer orders are applied to generalize notion of elasticity in frame-
work of economic dynamics with memory. Elasticity of Y with respect to X is defined for the
case of a finite-interval fading memory of changes of X and Y . We define generalizations of
point price elasticity of demand to the case of processes with memory. In these generalizations
we take into account dependence of demand not only from current price (price at current time),
but also all changes of prices for some time interval. For simplification, we will assume that there
is one parameter, which characterizes a degree of damping memory over time. The properties of
the suggested fractional elasticities and examples of calculations of these elasticities of demand
are suggested.
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