POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS OF N–DIMENSION NONLINEAR FRACTIONAL DIFFERENTIAL SYSTEM WITH INTEGRAL BOUNDARY CONDITIONS

ABDELHAMID BENMEZAI AND ABDELKADER SAADI

Abstract. In this paper, we study existence of positive solutions to the system of three-point fractional boundary value problem

\[
\begin{align*}
D_{0+}^{\alpha_i} u_i(t) + \lambda_i a_i(t) f_i(u_1(t), \ldots, u_n(t)) &= 0, \quad 0 < t < 1, \quad 2 < \alpha_i \leq 3 \\
u_i(0) &= u_i'(0) = 0 \\
u_i'(1) - \mu_i u_i' (\eta_i) &= \int_0^1 \phi_i(s) u_i'(s) ds
\end{align*}
\]

where for $i = 1, \ldots, n$, λ_i is a positive parameter, $D_{0+}^{\alpha_i}$ is the standard Riemann-Liouville differential operator of order $\alpha_i \in (2, 3]$, $\eta_i \in (0, 1)$, $\mu_i \geq 0$, $f_i : [0, +\infty)^n \to [0, +\infty)$ is a continuous function and $\phi_i : (0, 1) \to (0, +\infty)$ is a continuous increasing function and $\int_0^1 s^{\alpha_i-2} \phi_i(s) ds < +\infty$. Existence results are obtained by means of Krasnosel’skii’s fixed point theorem and the vector version of Krasnosel’skii’s fixed point theorem.

Keywords and phrases: Fractional derivatives, three-point BVPs, integral boundary conditions, positive solutions, fixed point theorem.

REFERENCES

