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Abstract. Gronwall’s inequality plays an important role in producing new research and in the
learning and teaching of differential and integral equations. The purpose of this work is to ad-
vance and simplify the current state of knowledge and pedagogical approaches regarding Gron-
wall’s inequality. In particular: we extend known versions of Gronwall’s inequality for fractional
calculus; and we provide simpler and more accessible proofs that can be easily transferred to the
classroom. Our work is also timely in the sense that it may be considered as a celebration of
the upcoming centenary of the publication of Gronwall’s original results. Thus, we believe this
paper is important from mathematical research, pedagogical and historical viewpoints.
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