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A NOTE ON GENERALIZED FRACTIONAL DIFFUSION

EQUATIONS ON POINCARÉ HALF PLANE

ROBERTO GARRA ∗ , F. MALTESE AND ENZO ORSINGHER

Abstract. In this paper we study generalized time-fractional diffusion equations on the Poincaré
half plane H

+
2 . The time-fractional operators here considered are fractional derivatives of a

function with respect to another function, that can be obtained essentially by means of a deter-
ministic change of variable in the Caputo derivative. We obtain an explicit representation of the
fundamental solution of the generalized-diffusion equation on H

+
2 and provide a probabilistic

interpretation in terms of a time-changed hyperbolic Brownian motion. We finally include an
explicit result regarding the non-linear case admitting a separating variable solution.
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