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EXISTENCE AND STABILITY RESULTS FOR A PANTOGRAPH

PROBLEM WITH SEQUENTIAL CAPUTO-HADAMARD DERIVATIVES

AMIRA ABDELNEBI* AND ZOUBIR DAHMANI

Abstract. In the current paper, we look at the existence, uniqueness, and stability of solutions
for a new pantograph problem with three sequential derivatives of Caputo-Hadamard type. The
proposed problem admits the third-order pantograph problem as a limiting case. So, based on
Banach contraction principle and Leray-Schauder fixed point theorems, two main theorems are
proved. Another main result for the Ulam-Hyers stability of solutions for the problem is es-
tablished. Furthermore, an illustrative example is presented to show the applicability of the
existence and uniqueness result as well as the Ulam stability one.
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