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STURM–LIOUVILLE AND BOUNDARY VALUE PROBLEMS

IN NABLA DISCRETE FRACTIONAL CALCULUS

KEVIN AHRENDT ∗ , AREEBA IKRAM AND ROCCO MARCHITTO

Abstract. We consider a novel discrete nabla fractional self-adjoint operator L in the Caputo
sense. We demonstrate basic properties of boundary-value problems under L , including explicit
solutions. Furthermore, we consider Sturm-Liouville problems under L and prove eigenvalue
results analogous to continuous classical Sturm-Liouville systems.

Mathematics subject classification (2020): 39A10, 39A70.
Keywords and phrases: Caputo fractional difference, Sturm-Liouville, fractional difference equation,

nabla difference operator.

RE F ER EN C ES

[1] T. ABDELJAWAD, On Delta and Nabla Caputo Fractional Differences and Dual Identities, Discrete
Dyn. Nature Soc. 2013, (2013), 1–12.

[2] T. ABDELJAWAD AND F. M. ATICI, On the definitions of nabla fractional operators, Abstr. Appl.
Anal. 2012, (2012).

[3] T. ABDELJAWAD, Dual identities in fractional difference calculus within Riemann, Adv. Difference
Equ. 2013, 36, (2013).

[4] T. ABDELJAWAD, R. MERT, AND A. PETERSON, Sturm Liouville Equations in the frame of frac-
tional operators with exponential kernels and their discrete versions, Quaestiones Mathematicae 42,
9, (2019), 1271–1289.

[5] T. ABDELJAWAD AND M. AL-REFAI, Fundamental Results of Conformable Sturm-Liouville Eigen-
value Problems, Wiley/Hindawi 2017, (2017).

[6] K. AHRENDT AND C. KISSLER Green’s Function for Higher-Order Boundary Value Problems In-
volving a Nabla Caputo Fractional Operator, J. Differ. Equ. 25, 6, (2019), 788-800.

[7] Q. M. AL-MDALLAL On the numerical solution of fractional Sturm-Liouville problems, International
Journal of Computer Mathematics 87, 12, (2010), 2837–2845.

[8] W. O. AMREIN, A. M. HINZ, AND D. B. PEARSON, Sturm-Liouville Theory: Past and Present,
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