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USING MITTAG–LEFFLER FUNCTIONS TO IMPROVE

SUFFICIENT CONDITIONS FOR THE UNIQUENESS OF

SOLUTIONS TO NABLA BOUNDARY VALUE PROBLEMS

NICHOLAS FEWSTER-YOUNG ∗ AND JAGAN MOHAN JONNALAGADDA

Abstract. In this paper, the uniqueness of solutions for two prominent classes to nabla fractional
boundary value problems are investigated. First, the associated Green’s functions are constructed
with their equivalent representations and inherent properties are proven. Secondly, the applica-
tion of the Banach fixed point theorem with sufficient conditions is used to establish the unique-
ness and existence of solutions to the considered problems on well-defined spaces with respect to
weighted supremum norms. To illustrate the merit, novelty, and applicability of the established
results, two examples are presented.
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