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FRACTIONAL TELEGRAPH EQUATION WITH THE

SEQUENTIAL RIEMANN–LIOUVILLE DERIVATIVE
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Abstract. In recent years, the telegraph equation has attracted much attention from researchers
due to its practical importance. In this paper, we discuss the telegraph equation

(t )2u(x,t)+2t u(x,t)−uxx(x,t) = f (x,t),

where 0 < t � T and 0 <  < 1 , with the Riemann-Liouville derivative. The boundary value
problem is investigated. Using the Fourier method, conditions are found for the initial functions
and the right-hand side of the equation that guarantee both the existence and uniqueness of the
solution of the boundary value problem. Stability inequalities are obtained. An explicit form
of the solution to the Cauchy problem for the corresponding ordinary differential equation was
found. Note that for such a Cauchy problem, only the existence of a solution was previously
known.
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