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Abstract. This paper explores the approximate controllability of a fractional differential con-
trol problem governed by a nonlinear hemivariational inequality in a Hilbert space. Initially, the
existence of a mild solution for a fractional control inclusion problem, equivalent to the hemivari-
ational inequality, is demonstrated using nonsmooth analysis and fixed-point techniques. Sub-
sequently, sufficient conditions for the approximate controllability of the inclusion problem are
established, assuming that the corresponding linear system is approximately controllable. The
existence and controllability results derived for the inclusion problem are applicable to the non-
linear hemivariational problem under consideration. An example is presented to illustrate the
effectiveness of the proposed results.
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