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MULTIPLICITY OF SOLUTIONS FOR HOMOGENEOUS

FRACTIONAL HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract. This paper investigates the multiplicity of solutions for a class of fractional Hamilto-
nian systems defined by the system:{

tD
(−D

t u)(t)+L(t)u(t) = −a(t)G(u(t))+b(t)H(u(t))+h(t), t ∈ R

u ∈ H (R),

where tD
 and −D

t denote the Liouville-Weyl fractional derivatives with 1
2 <  < 1 , L(t)

is a symmetric and positive definite matrix in R
N×N , a(t) and b(t) are positive bounded func-

tions, G(u) and H(u) are homogeneous functions on R
N , and h(t) is a given function in R

N .
Using variational techniques and the Pohozaev fibering method, we establish the existence of
infinitely many solutions when h(t) = 0 , and at least three solutions when h(t) is non-trivial but
sufficiently small. These results are novel and extend previous findings in the literature.
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