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GENERALIZATIONS OF SOME POLYNOMIAL

INEQUALITIES FOR THE FAMILY OF B–OPERATORS

GULSHAN SINGH, W. M. SHAH AND A. LIMAN

Abstract. Let Pn be the class of polynomials of degree at most n . In 1969, Rahman [Functions
of exponential type, Trans. Amer. Math. Soc., 135(1969), 295-309] introduced a class Bn of
operators B that map Pn into itself and proved that

max
|z|=1

∣∣∣B[P(Rz)]
∣∣∣ �

∣∣∣B[En(Rz)]
∣∣∣max
|z|=1

|P(z)|, R � 1,

for every B ∈ Bn , where En(z) := zn .
In this paper, we prove some generalizations and refinements of this result, which in par-

ticular yields some known polynomial inequalities as special cases.
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1. Introduction and statement of results

Let Pn be the class of polynomials P(z) := ∑n
j=0 a jz j of degree at most n and

P′(z) its derivative, then it is known that

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)| (1)

and
max

|z|=R>1
|P(z)| � Rn max

|z|=1
|P(z)|. (2)

Inequality (1), which is an immediate consequence of Bernstein’s inequality (for ref-
erence see [6]) on the derivative of a trigonometric polynomial is best possible with
equality holding for the polynomial P(z) = λ zn , where λ is a complex number. In-
equality (2) is a simple deduction from the maximum modulus principle (see [13, p.
346], [9, p. 158], problem 269).

For the class of polynomials P ∈ Pn having all their zeros in |z| � 1, we have

min
|z|=1

|P′(z)| � nmin
|z|=1

|P(z)| (3)

and
min

|z|=R>1
|P(z)| � Rn min

|z|=1
|P(z)|. (4)

Inequalities (3) and (4) are due to Aziz and Dawood [3]. Both the results are sharp and
equality holds for a polynomial having all its zeros at the origin.
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If we restrict ourselves to a class of polynomials having all their zeros in |z| � 1,
inequalities (1) and (2) can be sharpened. In fact, if P(z) �= 0 in |z| < 1, then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)| (5)

and

max
|z|=R>1

|P(z)| �
(Rn +1

2

)
max
|z|=1

|P(z)|. (6)

Inequality (5) was conjectured by Erdős and later verified by Lax [7], where as Ankeny
and Rivlin [1] used (5) to prove (6). Inequalities (5) and (6) were further improved in
[3] and under the same hypothesis, it was shown that

max
|z|=1

|P′(z)| � n
2

{
max
|z|=1

|P(z)|−min
|z|=1

|P(z)|
}

(7)

and

max
|z|=R>1

|P(z)| �
(Rn +1

2

)
max
|z|=1

|P(z)|−
(Rn−1

2

)
min
|z|=1

|P(z)|. (8)

Equality in (5), (6), (7) and (8) holds for polynomials of the form P(z) = αzn + β ,
where |α| = |β | .

Aziz [2], Aziz and Shah [4] and Shah [14] extended such well known inequalities
to the polar derivative of a polynomial P(z) with respect to a point α defined by

DαP(z) := nP(z)+ (α − z)P′(z)

and obtained several sharp inequalities. Like polar derivative there are many other
operators which are just as interesting (for reference see [11,12]). It is an interesting
problem, as pointed out by Professor Q. I. Rahman to characterize all such operators.
As a part of this characterization Rahman [10] (see also Rahman and Schmeisser [12,
page 538–551]) introduced a class Bn of operators B that map P ∈ Pn into itself. That
is, the operator B carries P ∈ Pn into

B[P](z) := λ0P(z)+ λ1

(nz
2

) P′(z)
1!

+ λ2(
nz
2

)2 P′′(z)
2!

(9)

where λ0,λ1,λ2 are real or complex numbers, such that all the zeros of

u(z) := λ0 + c(n,1)λ1z+ c(n,2)λ2z
2, c(n,r) =

n!
r!(n− r)!

(10)

lie in the half plane

|z| �
∣∣∣z− n

2

∣∣∣ (11)

and observed:

THEOREM A. If P ∈ Pn , then

max
|z|=1

∣∣∣B[P(Rz)]
∣∣∣ �

∣∣∣B[En(Rz)]
∣∣∣max
|z|=1

|P(z)|, R � 1. (12)

As an improvement Shah and Liman [15] proved:
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THEOREM B. If P ∈ Pn , P(z) �= 0 for |z| < 1 , then
∣∣∣B[P(Rz)]

∣∣∣ � 1
2

{∣∣∣B[En(Rz)]
∣∣∣+ |λ0|

}
max
|z|=1

|P(z)|, (13)

for every B ∈ Bn , where En(z) := zn .

Theorems A and B provide compact generalizations of inequalities (1), (2) and
(3), (4) respectively and these inequalities follow when we substitute for B[P](z) and
then use λ0 , λ1 and λ2 suitably.

In this paper, we prove some more general results concerning the operator B ∈ Bn

preserving inequalities between polynomials, which in turn yields compact generaliza-
tions of some well known polynomial inequalities. We first prove:

THEOREM 1. Let F(z) be a polynomial of degree n having all zeros in |z| � k ,
where k � 0 and f (z) be a polynomial of degree not exceeding that of F(z) . If | f (z)|�
|F(z)| for |z|= k , then for all complex numbers α , β with |α|� 1, |β |� 1 , R > r � k
and |z| � 1 , we have

∣∣∣B[ f (Rz)]+ ψ(R,r,α,β ,k)B[ f (rz)]
∣∣∣ �

∣∣∣B[F(Rz)]+ ψ(R,r,α,β ,k)B[F(rz)]
∣∣∣, (14)

where

ψ(R,r,α,β ,k) := β
{(R+ k

r+ k

)n −|α|
}
−α. (15)

A variety of interesting results can be deduced from Theorem 1 as special cases.
For example, by taking k = 1, we immediately have the following:

COROLLARY 1. Let F(z) be a polynomial of degree n having all its zeros in
|z| � 1 and f (z) be a polynomial of degree not exceeding that of F(z) . If

| f (z)| � |F(z)| for |z| = 1 ,

then for any real or complex numbers α , β with |α| � 1, |β | � 1 , R > r � 1 and
|z| � 1 , we have

∣∣∣B[ f (Rz)]+ φ(R,r,α,β )B[ f (rz)]
∣∣∣ �

∣∣∣B[F(Rz)]+ φ(R,r,α,β )B[F(rz)]
∣∣∣, (16)

where

φ(R,r,α,β ) := β
{(R+1

r+1

)n−|α|
}
−α. (17)

The following result immediately follows from Theorem 1 by taking f (z) = P(z)
and F(z) = Mzn , where M = max

|z|=1
|P(z)|.

COROLLARY 2. If P(z) is a polynomial of degree n, then for all real or complex
numbers α , β with |α| � 1 , |β | � 1 , R > r � k � 0 , we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣

� 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣max
|z|=k

|P(z)|,
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where ψ and En are defined above.

In particular for k = 1, we have the following interesting result:

COROLLARY 3. Let P(z) be a polynomial of degree n, then for all real or com-
plex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1 ,

∣∣∣B[P(Rz)]+ φ(R,r,α,β )B[P(rz)]
∣∣∣

�
∣∣∣B[En(Rz)]+ φ(R,r,α,β )B[En(rz)]

∣∣∣max
|z|=1

|P(z)| f or |z| � 1, (18)

where φ and En are defined above.

For α = 0 in Corollary 3, we get the following:

COROLLARY 4. Let P(z) be a polynomial of degree n, then for every real or
complex number β with |β | � 1 , R > r � 1 ,

∣∣∣B[P(Rz)]+ β
(R+1

r+1

)n
B[P(rz)]

∣∣∣

�
∣∣∣B[En(Rz)]+ β

(R+1
r+1

)n
B[En(rz)]

∣∣∣max
|z|=1

|P(z)| f or |z| � 1. (19)

REMARK 1. For β = 0, Corollary 4 reduces to inequality (12). Next if we chose
λ1 =λ2 = 0 and β = 0 in (18) and note that all the zeros of u(z) defined by (10) lie in
the region (11), we obtain for every real or complex number α with |α|� 1, R > r � 1,

∣∣∣P(Rz)−αP(rz)
∣∣∣ �

∣∣∣Rn−αrn
∣∣∣
∣∣∣zn

∣∣∣max
|z|=1

|P(z)| f or |z| � 1. (20)

Inequality (20) includes inequality (2) as a special case when α = 0. Further, if we
divide both sides of the inequality (20) by R− r with α = 1 and making R→ r , we get

∣∣∣P′(rz)
∣∣∣ � nrn−1|z|n−1 max

|z|=1
|P(z)| f or |z| � 1, (21)

which in particular yields inequality (1).

THEOREM 2. If P(z) is a polynomial of degree n, having no zeros in the disk
|z|< k , where k � 0 , then for all real or complex numbers α , β with |α|� 1 , |β |� 1 ,
R > r � k and |z| � 1 , we get

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣ �

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣,

where Q(z) := ( z
k )

nP( k2

z ) and ψ(R,r,α,β ,k) is defined by (15).
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THEOREM 3. If P(z) is a polynomial of degree n, having all its zeros in the disk
|z|� k , where k � 0 , then for all real or complex numbers α , β with |α|� 1 , |β |� 1 ,
R > r � k , we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣

� 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣min
|z|=k

|P(z)|,

where ψ and En are defined above.

THEOREM 4. Let P(z) be a polynomial of degree n, then for all real or complex
numbers α , β with |α| � 1 , |β | � 1 , R > r � k, k � 1 and |z| = 1 , we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣+

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣

�
{
|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣+ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣
}

max
|z|=1

|P(z)|,
(22)

where Q(z) := ( z
k )

nP( k2

z ) and En(z) := zn .

THEOREM 5. Let P(z) be a polynomial of degree n having all its zeros in |z|� k ,
k � 1 , then for all real or complex numbers α , β with |α| � 1 , |β | � 1 , R > r � k
and |z| = 1 , we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣

�1
2

{
|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣+ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣
}

max
|z|=1

|P(z)|,

where ψ and En are defined above.

THEOREM 6. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < k , k � 1 , then for all real or complex numbers α , β with |α| � 1 , |β | � 1 ,
R > r � k and |z| = 1 , we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣

�1
2

{[ 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣+ |λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣
]
max
|z|=1

|P(z)|

+
[ 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣−|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣
]
min
|z|=k

|P(z)|
}

,

where ψ and En are defined above.

For α = 0 in Theorem 6, we have the following:
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COROLLARY 5. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < k , k � 1 , then for every real or complex number β with |β | � 1 , R > r � k and
|z| = 1 ,

∣∣∣B[P(Rz)]+ β
(R+ k

r+ k

)n
B[P(rz)]

∣∣∣

�1
2

{[ 1
kn

∣∣∣B[En(Rz)]+ β
(R+ k

r+ k

)n
B[En(rz)]

∣∣∣+ |λ0|
∣∣∣1+ β

(R+ k
r+ k

)n∣∣∣
]
max
|z|=1

|P(z)|

+
[ 1
kn

∣∣∣B[En(Rz)]+ β
(R+ k

r+ k

)n
B[En(rz)]

∣∣∣−|λ0|
∣∣∣1+ β

(R+ k
r+ k

)n∣∣∣
]
min
|z|=k

|P(z)|
}

.

If we take β = 0 in Theorem 6, we get

COROLLARY 6. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < k , k � 1 , then for every real or complex number α with |α| � 1 , R > r � k and
|z| = 1 , ∣∣∣B[P(Rz)]−αB[P(rz)]

∣∣∣

�1
2

{[ 1
kn

∣∣∣B[En(Rz)]−αB[En(rz)]
∣∣∣+ |λ0|

∣∣∣1−α
∣∣∣
]
max
|z|=1

|P(z)|

+
[ 1
kn

∣∣∣B[En(Rz)]−αB[En(rz)]
∣∣∣−|λ0|

∣∣∣1−α
∣∣∣
]
min
|z|=k

|P(z)|
}

.

Also, the following result immediately follows from Theorem 6, if we take k = 1 .

COROLLARY 7. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < 1 , then for all real or complex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1
and |z| = 1 ,

∣∣∣B[P(Rz)]+ φ(R,r,α,β )B[P(rz)]
∣∣∣

�1
2

{[∣∣∣B[En(Rz)]+ φ(R,r,α,β )B[En(rz)]
∣∣∣+ |λ0|

∣∣∣1+ φ(R,r,α,β )
∣∣∣
]
max
|z|=1

|P(z)|

+
[∣∣∣B[En(Rz)]+ φ(R,r,α,β )B[En(rz)]

∣∣∣−|λ0|
∣∣∣1+ φ(R,r,α,β )

∣∣∣
]
min
|z|=1

|P(z)|
}
,

where φ and En are defined above.

If we take k = 1 and β = 0 in Theorem 6, we get the following:

COROLLARY 8. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < 1 , then for all real or complex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1
and |z| = 1 , ∣∣∣B[P(Rz)]−αB[P(rz)]

∣∣∣

�1
2

{[∣∣∣B[En(Rz)]−αB[En(rz)]
∣∣∣+ |λ0|

∣∣∣1−α
∣∣∣
]
max
|z|=1

|P(z)|

+
[∣∣∣B[En(Rz)]−αB[En(rz)]

∣∣∣−|λ0|
∣∣∣1−α

∣∣∣
]
min
|z|=1

|P(z)|
}

.
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2. Lemmas

For the proofs of these theorems we require the following lemmas. The first lemma
follows from Corollary 18.3 of [8, p. 65].

LEMMA 1. If all the zeros of a polynomial P(z) of degree n lie in a circle |z|� k ,
where k � 0 , then all the zeros of the polynomial B[P](z) also lie in the circle |z| � k
where k � 0 .

LEMMA 2. If P(z) is a polynomial of degree n, having all zeros in the closed disk
|z| � k , where k � 0 , then for every R � r and rR � k2 ,

|P(Rz)| �
(

R+k
r+k

)n|P(rz)|, |z| = 1.

The above Lemma is due to Aziz and Zargar [5].

3. Proofs of the theorems

Proof of Theorem 1. Since | f (z)| � |F(z)| for |z| = k , therefore any zero of F(z)
that lies on |z| = k , is also zero of f (z) . For λ with |λ | < 1, it follows by Rouche’s
theorem, that the polynomial H(z) = F(z) + λ f (z) has all its zeros in |z| � k . On
applying Lemma 2 to H(z) , we have

H(Rz) �
(R+ k

r+ k

)n|H(rz)| > |H(rz)|, R > r � k, |z| = 1 (23)

Therefore, for any α with |α| � 1, we have

∣∣∣H(Rz)−αH(rz)
∣∣∣ �

∣∣∣H(Rz)
∣∣∣−|α|

∣∣∣H(rz)
∣∣∣ �

{(R+ k
r+ k

)n−|α|
}
|H(rz)|, |z| = 1.

(24)
Since H(Rz) has all its zeros in |z|� k

R < 1. Therefore, for every real or complex num-
ber α with |α| < 1, it follows from inequality (23) by direct application of Rouche’s
theorem that the polynomial H(Rz)−αH(rz) has all its zeros in |z| < 1. Again from
inequality (24) by the direct application of Rouche’s theorem, it follows that for all real
or complex number β with |β | < 1 and R > r � k , that all the zeros of the polyno-

mial H(Rz)−αH(rz) + β
{(

R+k
r+k

)n − |α|
}

H(rz) lie in |z| < 1. Applying Lemma 1

and using the linearity of B , it follows that all the zeros of the polynomial

T (z) := B[H(Rz)]−αB[H(rz)]+ β
{(R+ k

r+ k

)n−|α|
}

B[H(rz)]

lie in |z| < 1 for every real or complex number α with |α| � 1 and R > r � k . Re-
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placing H(z) by F(z)+ λ f (z) , we conclude that all the zeros of the polynomial

T (z) := B[F(Rz)]+ λB[ f (Rz)]−α
(
B[F(rz)]+ λB[ f (rz)]

)

+ β
{(R+ k

r+ k

)n−|α|
}(

B[F(rz)]+ λB[ f (rz)]
)

= B[F(Rz)]−αB[F(rz)]+ β
{(R+ k

r+ k

)n −|α|
}
B[F(rz)]

+ λ
(
B[ f (Rz)]−αB[ f (rz)]+ β

{(R+ k
r+ k

)n−|α|
}

B[ f (rz)]
)

lie in |z| < 1 for all real or complex numbers α , β with |α| � 1, |β | � 1, R > r � k
and |z| < 1.

This implies
∣∣∣B[ f (Rz)]+ ψ(R,r,α,β ,k)B[ f (rz)]

∣∣∣ �
∣∣∣B[F(Rz)]+ ψ(R,r,α,β ,k)B[F(rz)]

∣∣∣, (25)

where ψ(R,r,α,β ,k) := β
{(

R+k
r+k

)n−|α|
}
−α , |z| � 1 and R > r � k .

If the inequality (25) is not true, then there exist a point z = ω with |ω | � 1 such
that

∣∣∣B[ f (Rz)]+ ψ(R,r,α,β ,k)B[ f (rz)]
∣∣∣ >

∣∣∣B[F(Rz)]+ ψ(R,r,α,β ,k)B[F(rz)]
∣∣∣.

Taking

λ = −B[F(Rz)]+ ψ(R,r,α,β ,k)B[F(rz)]
B[ f (Rz)]+ ψ(R,r,α,β ,k)B[ f (rz)]

,

so that |λ | < 1 and with this choice of λ , we have T (ω) = 0 for |ω | � 1. This is
clearly a contradiction to the fact that all the zeros of T (z) lie in |z| < 1. Thus for all
real or complex numbers α , β with |α|� 1, |β |� 1 and R > r � k , we get (14). �

Proof of Theorem 2. Let Q(z) := ( z
k )

nP( k2

z ) . Since all the zeros of a polynomial
P(z) of degree n lie in |z|� k , therefore, Q(z) is a polynomial of degree n having all its
zeros in |z| � k . Applying Theorem 1 with f (z) replaced by P(z) and F(z) by Q(z) ,
we obtain for every R > r � k and |z| � 1,

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣ �

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣.

This proves Theorem 2. �

Proof of Theorem 3. Let m = min
|z|=k

|P(z)| . For m = 0, there is nothing to prove.

Assume that m > 0, so that all the zeros of P(z) lie in |z| < k and we have,

m
∣∣∣ z
k

∣∣∣
n
� |P(z)| f or |z| = k .
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Applying Theorem 1 with F(z) replaced by P(z) and f (z) by m( z
k )

n , we obtain for all
real or complex numbers α , β with |α| � 1, |β | � 1, R > r � k ,

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣

� 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣min
|z|=k

|P(z)|.

This proves Theorem 3. �

Proof of Theorem 4. Let M = max
|z|=k

|P(z)| , then |P(z)| � M for |z| � k. If λ is

any real or complex number with |λ | > 1, then by Rouche’s theorem the polynomial
G(z) = P(z)−λM does not vanish in |z| < k. Consequently the polynomial

H(z) := ( z
k )

nG( k2

z )

has all zeros in |z| � k and |G(z)| = |H(z)| for |z| = k . On applying Theorem 1, we
have for all real or complex numbers α , β with |α| � 1, |β | � 1, R > r � k, k � 1
and |z| � 1,

∣∣∣B[G(Rz)]+ ψ(R,r,α,β ,k)B[G(rz)]
∣∣∣ �

∣∣∣B[H(Rz)]+ ψ(R,r,α,β ,k)B[H(rz)]
∣∣∣. (26)

Since

H(z) := ( z
k )

nG( k2

z ) = ( z
k )

nP( k2

z )−λ( z
k )

nM = Q(z)−λ( z
k )

nM.

Therefore, using the fact that B is linear and B[1] = λ0 , we get from inequality (26)

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]−λ λ0M
(
1+ ψ(R,r,α,β ,k)

)∣∣∣

�
∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]−λM

1
kn

(
B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]

)∣∣∣.
(27)

Using Corollary 2 for the polynomial Q(z) and noting that |P(z)|= |Q(z)| for |z| = k ,
we obtain
∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]

∣∣∣ � 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣M.

Therefore, we can choose an argument of λ in (27) such that

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]−λM
1
kn

(
B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]

)∣∣∣

=|λ |M 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣−

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣.

(28)
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Using (28) in (27), we get

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣−|λ ||λ0|M

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣

� |λ |M 1
kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣

−
∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]

∣∣∣.

Equivalently,

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣+

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣

�|λ |M
{
|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣+ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣
}
.

Making |λ | → 1, we have

∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]
∣∣∣+

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣

�M
{
|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣+ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣
}
. (29)

By the Maximum Modulus Principle for the polynomial P(z) when k � 1, we get

M = max
|z|=k

|P(z)| � max
|z|=1

|P(z)|. (30)

Combining (30) and (29), we get desired result. �

Proof of Theorem 5. The desired result immediately follows by combining Theo-
rem 2 and Theorem 4. �

Proof of Theorem 6. If P(z) has a zero on |z| = k , then the result follows from
Theorem 5. Therefore we assume that P(z) has all zeros in |z| > k , so that m =
min
|z|=k

|P(z)| > 0 and for a real or complex number λ with |λ | < 1, we have |λm| <

m � |P(z)| , for |z| = k . By Rouche’s theorem, the polynomial G(z) = P(z)−λm does
not vanish in |z| < k. Consequently the polynomial

H(z) := ( z
k )

nG( k2

z )

has all zeros in |z| � k and |G(z)| = |H(z)| for |z| = k . By applying Theorem 1, we
have for all real or complex numbers α , β with |α| � 1, |β | � 1, R > r � k , k � 1
and |z| � 1,

∣∣∣B[G(Rz)]+ ψ(R,r,α,β ,k)B[G(rz)]
∣∣∣ �

∣∣∣B[H(Rz)]+ ψ(R,r,α,β ,k)B[H(rz)]
∣∣∣. (32)
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Substituting for G(z) and H(z) in (32), using the fact that B is linear and B[1] = λ0 ,
we get

∣∣∣B[P(Rz)]+ψ(R,r,α,β ,k)B[P(rz)]−λ λ0m
(
1+ ψ(R,r,α,β ,k)

)∣∣∣
�

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]

−λm
1
kn

(
B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]

)∣∣∣. (33)

Choosing the argument of λ suitably, which is possible, we get from (33)
∣∣∣B[P(Rz)]+ψ(R,r,α,β ,k)B[P(rz)]

∣∣∣−|λ ||λ0|m
∣∣∣1+ ψ(R,r,α,β ,k)

∣∣∣

�
∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]

∣∣∣−|λ |m 1
kn

∣∣∣B[En(Rz)]

+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣, (34)

This gives,
∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]

∣∣∣
�

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣

−|λ |
{ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣−|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣
}

m.

Making |λ | → 1, we have
∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]

∣∣∣
�

∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]
∣∣∣

−
{ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣−|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣
}

m, (35)

Also, by Theorem 4, we have
∣∣∣B[P(Rz)]+ ψ(R,r,α,β ,k)B[P(rz)]

∣∣∣+
∣∣∣B[Q(Rz)]+ ψ(R,r,α,β ,k)B[Q(rz)]

∣∣∣

�
{
|λ0|

∣∣∣1+ ψ(R,r,α,β ,k)
∣∣∣+ 1

kn

∣∣∣B[En(Rz)]+ ψ(R,r,α,β ,k)B[En(rz)]
∣∣∣
}

max
|z|=1

|P(z)|,
(36)

Combining the inequalities (35) and (36), we get the desired result. �
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