MEANS AND NONREAL INTERSECTION POINTS OF TAYLOR POLYNOMIALS

ALAN HORWITZ

Abstract. Suppose that \(f \in C^{r+1}(0, \infty) \), and let \(P_c \) denote the Taylor polynomial to \(f \) of order \(r \) at \(x = c \in [a,b] \). In [2] it was shown that if \(r \) is an odd whole number and \(f^{(r+1)}(x) \neq 0 \) on \([a,b]\), then there is a unique \(x_0, a < x_0 < b \), such that \(P_a(x_0) = P_b(x_0) \). This defines a mean \(M_r^f(a,b) \equiv x_0 \). In this paper we discuss the real parts of the pairs of complex conjugate nonreal roots of \(P_b - P_a \). We prove some results for \(r \) in general, but our most significant results are for the case \(r = 3 \). We prove in that case that if \(f(z) = z^p \), where \(p \) is an integer, \(p \notin \{0,1,2,3\} \), then \(P_b - P_a \) has nonreal roots \(x_1 \pm iy_1 \), with \(a < x_1 < b \) for any \(0 < a < b \). This defines the countable family of means \(M_3^{zp}(a,b) \), where \(p = n \in \mathbb{Z} - \{0,1,2,3\} \). We construct a cubic polynomial, \(g \), whose real root gives the real part of the pair of complex conjugate nonreal roots of \(P_b - P_a \). Instead of working directly with a formula for the roots of a cubic, we use the Intermediate Value Theorem to show that \(g \) has a root in \((a,b)\).

Keywords and phrases: Mean, Taylor polynomial, nonreal roots.

REFERENCES