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FURTHER EXPLORATION OF RIEMANN’S FUNCTIONAL EQUATION

MICHAEL MILGRAM

Abstract. A previous exploration of the Riemann functional equation that focussed on the critical

line, is extended over the complex plane. Significant results include a simpler derivation of the

fundamental equation obtained previously, and its generalization from the critical line to the

complex plane. A simpler statement of the relationship that exists between the real and imaginary

components of ζ (s) and ζ ′(s) on opposing sides of the critical line is developed, reducing to a

simpler statement of the same result on the critical line. An analytic expression is obtained for

the sum of the arguments of ζ (s) on symmetrically opposite sides of the critical line, reducing to

the analytic expression for arg(ζ (1/2 + iρ)) first obtained in the previous work. Relationships

are obtained between various combinations of |ζ (s)| and |ζ ′(s)| , particularly on the critical

line, and it is demonstrated that the difference function arg(ζ (1/2 + iρ))− arg(ζ ′(1/2 + iρ))
uniquely defines |ζ (1/2 + iρ)| . A comment is made about the utility of such results as they

might apply to putative proofs of Riemann’s Hypothesis (RH).
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