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VARIATIONS ON A HYPERGEOMETRIC THEME

MICHAEL MILGRAM

Abstract. The question was asked: Is it possible to express the function

h(a) ≡ 4F3(a,a,a,a;2a,a+1,a+1;1) (1.1)

in closed form [1]? After considerable analysis, the answer appears to be “no”, but during the
attempt to answer this question, a number of interesting (and unexpected) related results were
obtained, either as specialized transformations, or as closed-form expressions for several related
functions. The purpose of this paper is to record and review both the methods attempted and
the related identities obtained, the former for their educational merit, the latter because they do
not appear to exist in the literature. Specifically, new 4F3(1) , 5F6(1) and generalized Euler
sums (those containing digamma functions) are presented along with a detailed discussion of the
methods used to obtain them.
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APPENDICES

A. 4-part Transformations of a 4F3(1)

A.1. Miller’s transforms

Miller [9, Eqs. (1.1) and (1.2)] has obtained the following two 4-part transforma-
tions among arbitrary 4F3(1) .

4F3(a,b,c,d; e, f ,g; 1) (A.1)

= Γ(e)Γ( f )Γ(g)Γ(1−d)

×
(

Γ(b−a)Γ(c−a)4F3(a,1+a−e,1+a− f ,1+a−g; 1+a−d,1+a−b,1+a−c; 1)
Γ(b)Γ(c)Γ(e−a)Γ( f−a)Γ(g−a)Γ(1+a−d)
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+
Γ(a−b)Γ(c−b)4F3(b,1+b−e,1+b− f ,1+b−g; 1+b−d,1+b−a,1+b−c; 1)

Γ(a)Γ(c)Γ(e−b)Γ( f−b)Γ(g−b)Γ(1+b−d)

+
Γ(a−c)Γ(b−c)4F3(c,1+c−e,1+c− f ,1+c−g; 1+c−d,1+c−a,1+c−b; 1)

Γ(b)Γ(a)Γ(e−c)Γ( f−c)Γ(g−c)Γ(1+c−d)

)

and

4F3(a,b,c,d; e, f ,g; 1) (A.2)

=
Γ(e)Γ( f )Γ(1−d)Γ(1−c)

Γ(1−g)

×
(

Γ(a−b)Γ(1+b−g)4F3(b,1+b−g,1+b− f ,1+b−e;1+b−c,1+b−d,1+b−a;1)
Γ(a)Γ(e−b)Γ( f−b)Γ(1+b−c)Γ(1+b−d)

+
Γ(b−a)Γ(1+a−g)4F3(a,1+a−g,1+a−e,1+a− f ;1+a−c,1+a−d,1+a−b;1)

Γ(b)Γ(e−a)Γ( f−a)Γ(1+a−c)Γ(1+a−d)

−Γ(g−1)Γ(1+a−g)Γ(1+b−g)4F3(1+b−g,1+a−g,1+c−g,1+d−g; 2−g,1+e−g,1+f−g;1)
Γ(a)Γ(b)Γ(g−c)Γ(g−d)Γ(1+e−g)Γ(1+ f−g)

)

A.2. Meijer G-function transforms

Any hypergeometric function pFq(ap;bq;z) can always be written as a Meijer G-
function [21, Chapter V] and the reverse. The original intent of the Meijer G-function
was to assign meaning to pFq(z) when p > q+1 by the magic of contour integration
and the residue theorem. This is summarized by the general result [21, Eq. 5.3(1)]

Gm,n
p,q

(
z
∣∣∣ap
bq

)
= Gn,m

q,p

(
1
z

∣∣∣1−bq
1−ap

)
arg

1
z

= −arg z . (A.3)

which shows that the interchange of ap ↔ 1−ap and bq ↔ 1−bq together with p ↔ q
is equivalent to the analytic continuation z → 1/z for any (m and n combination(s) of)
pFq−1(z) . Of course when p = q and z = 1 this is equivalent to a transformation among
(combinations of) qFq−1(1) . For example, with z = 1 in (A.3) along with the pre-
scription [21, Eq. 5.2(7)] for expanding a G-function into a combination of pFq−1(1) ,
and using (−1)a = exp(−iπa) as a template for dealing with terms that arise in the
expansion, rewrite both sides in the form of (a) combination(s) of 4F3(1) by setting
m = 1,n = 4, p = q = 4. The imaginary part of the resulting expression must vanish,
because for the moment, without loss of generality, it is permissible to require that the
variables a, . . .g ∈ R . Solving that equation yields an apparently hitherto unrecognized
4-part transformation as follows

4F3 (a,b,c,d ;e, f ,g; 1) (A.4)

= −Γ(1−a)Γ(1−b)Γ(1−d)Γ(1−c)
Γ(1− f )Γ(1−e)Γ(1−g)
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×
(

Γ(g−1)Γ(g− f )Γ(g−e) 4F3 (1−g+a,1−g+b,1−g+c,1−g+d;2−g, f+1−g,e+1−g;1)
Γ(g−b)Γ(g−c)Γ(g−d)Γ(g−a)

+
Γ(e−1)Γ(e− f)Γ(e−g)4F3 (1−e+a,1−e+b,1−e+c,1−e+d;2−e, f+1−e,g+1−e;1)

Γ(e−b)Γ(e−c)Γ(e−d)Γ(e−a)

+
Γ( f−1)Γ(f−e)Γ( f−g)4F3(1−f+a,1− f+b,1− f+c,1− f+d;2−f ,e+1− f ,g+1− f ;1)

Γ( f−b)Γ( f−c)Γ( f−d)Γ( f−a)

)

whose validity can be expanded to include the variables a, . . .g ∈C because of the prin-
ciple of analytic continuation (parameter space is analytic). This relationship appears
to be independent of (A.1) and (A.2). However, it is easily shown that the transfor-
mation arising from the real part of that same expression is a symmetric permutation
of, and therefore equivalent to, (A.1). It is an open question which of the many other
permutations of variables among (A.1), (A.2) and (A.4) will result in new, independent
transformations applicable to 4F3(1) , analogous to Whipple’s categorization of three-
part transformations for hypergeometric 3F2(1) discussed in [21, Section 3.13]. See
Appendix C. This is discussed at some length in [8] and [22].
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B. Application to a 3F2(1)

In Section ??, the motivation for considering transformations among 3F2(1) was
presented. With this in mind, several relationships involving special cases of 3F2(1)
are (re)derived and collected in this Appendix.

B.1. Special cases of Miller, Paris, Shpot and Srivastava

A simple relevant transformation can be obtained using Miller and Paris [2, Eq.
(1.7)] where it is shown for m > n that

3F2 (a,b,n; c,m; 1) (B.1)

=
Γ(m)Γ(1−a)Γ(1−b)

Γ(n)Γ(1−c)

m−n−1

∑
k=0

(−1)k Γ(n+k)Γ(1−c+n+k)
Γ(k+1)Γ(m−n−k)Γ(1−a+n+k)Γ(1−b+n+k)

+
Γ(m)Γ(c)Γ(1−a)Γ(1−b)
Γ(c−a)Γ(c−b)Γ(m−n)

n−1

∑
k=0

(−1)k Γ(k+m−n)Γ(c−a−b+k+m−n)
Γ(k+1)Γ(n−k)Γ(1−a+k+m−n)Γ(1−b+k+m−n)

.

Formally, generalize (B.1) by extending the upper limit of both sums to infinity
(they are truncated by the denominator Gamma functions if m,n∈N) straightforwardly
identifying each of the extended sums as a hypergeometric function. Then relax the
above condition by generalizing such that m,n ∈ R , to obtain

3F2 (a,b,c;e, f ; 1) (B.2)

=
Γ( f )Γ(1−a)Γ(1−b)Γ(−e+c+1)3F2 (c,− f+c+1,−e+c+1;1−b+c,1−a+c; 1)

Γ(1−e)Γ( f−c)Γ(1−a+c)Γ(1−b+c)

+
Γ( f )Γ(e)Γ(1−a)Γ(1−b)Γ(e−a−b+ f−c)

Γ(e−a)Γ(e−b)Γ(c)Γ(1−a+ f−c)Γ(1−b+ f−c)
× 3F2 ( f−c,1−c,e−a−b+ f−c;1−b+ f−c,1−a+ f−c; 1) ,

a known result (see (C.20) below) that resides in [21, Tables (3.3), (3.4) and(3.5)], valid
for all values of the parameters a,b,c,e, f . This observation justifies the apparently ad
hoc replacement c → e,m → f ,n → c in (B.1) to yield (B.2).

REMARK. Reverse this procedure by setting f → m and c → n to obtain a much
simpler derivation of (B.1) from the known result (B.2).

Similarly, Shpot and Srivastava [18] have obtained a result for a more general
related problem as follows:

3F2(a,b,c; b+1+m,c+1+n; z) (B.3)

=
Γ(b+1+m)Γ(c+1+n)

Γ(b)Γ(c)

m

∑
i=0

n

∑
j=0

(−1)i (−1) j

Γ(1−i+m)Γ(n+1− j)Γ(i+1)Γ( j+1)

×
(

2F1(a,c+ j; c+ j+1; z)
(c+ j) (b−c+i− j)

+ 2F1(a,b+i; b+i+1; z)
(b+i) (c−b+ j−i)

)
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After a somewhat lengthy analysis, in the case that z = 1, they reduce this result
to a 3-part transformation [18, Eq. (31)] (see (D.11)) among terminating 3F2(1) on the
right, and the same 3F2(1) that appears in (B.3) on the left. However, following the
same logic as outlined above, by setting

m → e−1−b (B.4)

n → f−1−c

we obtain a generalization of Shpot and Srivastava’s result [18, Eq. (31)] (see (D.11))
in the form of a well known 3-part transformation, specifically [21, Eq. 3.13.3(11)],
and explicitly

3F2(a,b,c; e, f ; 1) (B.5)

= Γ(1−a)Γ( f )Γ(e)
(

Γ(c−b)3F2(b,−e+1+b,b+1− f ; b−c+1,b+1−a; 1)
Γ(c)Γ(e−b)Γ(b+1−a)Γ(−b+ f )

+
Γ(b−c) 3F2(c,− f+c+1,−e+c+1; c+1−a,c−b+1; 1)

Γ(b)Γ(c+1−a)Γ(e−c)Γ( f−c)

)
.

REMARK 1. Reversing (B.4), gives a simple derivation of [18, Eq. (31)] from the
known result (B.5).

REMARK 2 AND DIGRESSION. In (B.3), set z = 1, sum (and reverse) the various
series that arise and compare with [18, Eq. (31)] to find an interesting contiguity relation
(also see [23]):

3 F2 (c,−n,b; a,b+1+m; 1) =
(−1)m Γ(1−b)

Γ(−b−m)

m

∑
i=0

(−1)i
3 F2 (c,−n,b+i; a,b+i+1; 1)

(−b−i)Γ(i+1)Γ(1−i+m)
.

(B.6)

B.2. Obvious reduction from a 4F3

Set a pair of the top and bottom parameters in (A.1) to be equal (e.g. a = e),
and thereby trivially produce the three-part transformations among 3F2(1) reproduced
above (B.5).

With a similar choice of reduction (e = a ) and reassignment of variable names in
(A.4), another three-part transformation among 3F2(1) results. This result is equivalent
to applying (A.3) in the case m = 1, n = 1, p = q = 3. Although this transformation
involves terms clearly embedded in [21, Tables 3.3, 3.4 and 3.5] it is given explicitly
below:

3F2(a,b,c; f ,e; 1) (B.7)

= −Γ(1−b)Γ(1−c)Γ(1−a)
Γ(1− f )Γ(1−e)

×
(

Γ(−1+ f )Γ(−e+ f ) 3F2(1+a− f ,1+b− f ,1+c− f ; 2− f ,1+e− f ; 1)
Γ( f−a)Γ(−b+ f )Γ( f−c)

+
Γ(−1+e)Γ(e− f ) 3F2(1+a−e,1+b−e,1+c−e; 2−e,1+ f−e; 1)

Γ(e−a)Γ(e−b)Γ(e−c)

)
.
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Because of the asymmetry among the parameters of the 4F3 appearing in (A.2),
various reductions from a 4F3 to a 3F2 can be made by choosing to equate different
combinations of top and bottom parameters to yield different transformations. For ex-
ample, the case g = d produces a symmetric permutation equivalent to (B.5) whereas
choosing e = a and reassigning variables generates the following mixture, all of which
are included (see Appendix C) in [21, Tables (3.3), (3.4) and (3.5)]:

3F2(a,b,c; e, f ; 1) =Γ(1+b−e)Γ(1−a)Γ(1−c)Γ( f ) (B.8)

×
(

3F2(b,1+b−e,1+b− f ; 1+b−c,1+b−a; 1)
Γ(1−e)Γ( f−b)Γ(1+b−c)Γ(1+b−a)

+Γ(e) 3F2(1+b−e,1+a−e,1+c−e; 2−e,1−e+ f ; 1)
Γ(2−e)Γ(−c+e)Γ(e−a)Γ(1−e+ f )Γ(b)

)
.

B.3. Curious reduction from a 4F3(1)

A curious combination arises by setting g = d in (A.1) to obtain

3F2(a,b,c; e, f ; 1) (B.9)

=
Γ(e)Γ( f )
sin (π d)

×
(
−sin(π (a−d)) 3F2(a,1+a−e,1+a− f ; 1+a−c,1+a−b; 1)Γ(c−a)Γ(b−a)

Γ( f−a)Γ(e−a)Γ(c)Γ(b)

−Γ(a−b)sin(π (b−d)) 3F2(b,1+b−e,1+b− f ; 1+b−a,1+b−c; 1)Γ(c−b)
Γ(a)Γ(c)Γ( f−b)Γ(e−b)

−Γ(a−c)Γ(b−c)sin(π (−d+c)) 3F2(c,1+c−e,1+c− f ; 1+c−a,1+c−b; 1)
Γ(a)Γ( f−c)Γ(e−c)Γ(b)

)
.

Notice the appearance of the arbitrary parameter d on the right-hand side but not on
the left. Various possibilities were studied for various choices of the parameter d ; even
the choice d = 0 yielded nothing other than one of the results quoted above. A typical
choice of d = 1/2 yields nothing more than a four-part transformation among 3F2(1)
functions (but also see (C.5)). However, a second even more curious transformation
exists: set g = a in (A.2) to obtain another transformation, again with a superflous
and arbitrary parameter a appearing on the right-hand side, but not the left, this time
embedded within the parameters of the hypergeometric functions themselves, rather
than in a multiplicative factor. That is, after redefining parameters (including a := d ):

3F2(a,b,c; e, f ; 1) (B.10)

=
Γ(1+b−d)Γ(1−c)Γ(1−a)Γ( f )Γ(e)

Γ(1−d)

×
(

3F2(b,1+b−e,1+b− f ; 1+b−a,1+b−c; 1)Γ(d−b)
Γ(d)Γ(1+b−a)Γ(1+b−c)Γ( f−b)Γ(e−b)

−Γ(d−b)4F3(1,d,1−e+d,1− f+d; 1+d−a,1+d−b,1+d−c; 1)
Γ( f−d)Γ(e−d)Γ(1+d−b)Γ(1+d−c)Γ(1+d−a)Γ(b)
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−Γ(d−1)4F3(1,1+a−d,1+b−d,1+c−d; 2−d,1+e−d,1+ f−d; 1)
Γ(d)Γ(d−a)Γ(d−c)Γ(1+e−d)Γ(1+ f−d)Γ(b)

)

Although the case d = 0 appears to be superficially interesting, after simplifica-
tion, the result yields nothing more profound than the simple and well known reduction

4 F3 (1,a,b,c; 2,e, f ; 1) =
(e−1)( f−1)(3 F2 (a−1,b−1,c−1; e−1, f−1; 1)−1)

(a−1) (b−1)(c−1)
(B.11)

The result (B.10) however offers potential for investigating the properties of sums
involving digamma functions, because the left hand-side vanishes under the action of
the operator ∂

∂ d .

C. Appendix: A primer on 3-part relations among 3F2(1)

The following should be read in conjunction with Section 3.13.3 of Luke’s book
[21]; Slater’s book [4, Section 4.3.2] also covers much of the same material.

The three part relations among 3F2(1) were classified by Whipple (1923), sum-
marized by Bailey [7, Section 3.5] and reproduced by Luke [21, Section 3.13.3] and
Slater [4, Section 4.3.2]. To say that the notation is obscure would be an understate-
ment, and perhaps that is why these relations are often overlooked in the literature (e.g.
see (B.2) and (B.5)). The following is an addendum to, and clarification of, Whipple’s
classification, the basis of which is a set of six parameters ri where i = 0(1)5. To the
best of my knowledge, these have never been explicitly listed in the literature. Working
backwards from [21, Table 3.3] it is possible to obtain these parameters in terms of
the top and bottom parameters of a canonical function 3F2(a,b,c;e, f ;1) and thereby
clarify the underlying algorithm. In summary,

r0 = 5/6+c/3+b/3−2/3e−2/3 f+a/3 (C.1)

r1 = −2/3b+e/3−1/6+ f/3+a/3−2/3c

r2 = f/3−2/3a+e/3−1/6+b/3−2/3c

r3 = c/3−1/6+e/3−2/3b+ f/3−2/3a

r4 = e/3−1/6+b/3−2/3 f+a/3+c/3

r5 = −1/6+b/3−2/3e+ f/3+a/3+c/3 ,

from which, with the help of [21, Eq. (3.13.3(13)] it is possible to reproduce [21, Table
3.3] in its entirety, and calculate representative (i.e. mixed combination of a,b,c,e, f )
top and bottom parameters αlmn and βmn respectively (see [21, Eq. 3.13(13)]), labelled
by distinct permutations of integers l,m,n = 0(1)5. Whipple then introduces two fun-
damental functions Fp(u;v,w) and Fn(u;v,w) [21, Eqs. 3.13.3(14) and 3.13.3(15)]
defined in terms of 3F2(a,b,c;e, f ;1) , where each of the labels u,v,w take on one of
the distinct, but different, numbers 0,1 . . .5. Representative independent mixtures of
the top and bottom parameters are classified and listed in [21, Tables 3.4 and 3.5]; any
missing combinations from the tables represent simple, irrelevant permutations among
the top three, or between the bottom two, parameters of the canonical 3F2(1) . The
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important point to note is that only the first parameter of Fp(u;v,w) or Fn(u;v,w) is
important; the second and third parameters represent different mixtures among the top
and bottom parameters and are conveniently omitted unless needed for clarity or speci-
ficity. Because of the two-part (Thomae) relations, all twenty of these functions with
the same first parameter are equal; that is

Fp(u;v1,w1) = Fp(u;v2,w2) (C.2)

and

Fn(u;v1,w1) = Fn(u;v2,w2) (C.3)

for any permitted combination of u,v,w = 0(1)5 (no duplication). In the following,
it is assumed that the arguments of any function on either side of an equality sign
are such that the series representation converges (if s ≡ e+ f−a−b−c , then ℜ(s) >
0); otherwise, the equality between sides must be interpreted in the sense of analytic
continuation. With this notation, [21, Eq. 3.13.3(11)] (also [3, Eq. 7.4.4(3)] or (B.5)), a
well known three-part relation among three particular 3F2(1) , can be written in labelled
form

Fp (0;4,5) =
π Γ(α023)
sin(π β23)

(
Fn(2)

Γ(α134)Γ(α135)Γ(α345)
− Fn (3)

Γ(α124)Γ(α125)Γ(α245)
,

)
(C.4)

or, in expanded form

Fp (0;4,5) = −Γ(c+1−b)Γ(b−c)Γ(1−a) (C.5)

×
(

Fn (2;3,1)
Γ(−b+e)Γ(−b+ f )Γ(c)

− Fn (3;1,2)
Γ(e−c)Γ( f−c)Γ(b)

)
.

In (C.5), an arbitrary choice of (superfluous) second and third parameters of Fn(2) and
Fn(3) have been included, and the arguments of the Γ functions have been written
explicitly in terms of the underlying parameters, to specify one of the 20 possibili-
ties equivalent to (B.5). By limiting the left-hand side to one particular (the canoni-
cal) 3F2(1) , and removing the second and third parameters from the right-hand side,
(C.4) represents a family of forty 3-part relations among different combinations of
3F2(1) selected by different combinations of second and third parameters (see [21,
Table 3.13.3.5]) on the right-hand side. Three other (equivalent families of) three-part
relations among 3F2(1) are known and listed in [3, Eqs. 7.4.4(4)–(6)]. The first two of
these, once parsed according to the tables and rules cited above, and illustrated by one
specific instance each, are

Fp (0;4,5) (C.6)

= Γ(1+c−e)

×
(

Γ(e−a−b)Fn (5;0,3)Γ(1+a+b−e)
Γ(s)Γ(−a+e)Γ(−b+e)

+
Γ(a+b−e)Fn (3;0,5)Γ(1+e−b−a)

Γ(b)Γ( f−c)Γ(a)

)
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and

Fp (0;4,5) = Γ(1− f+b)Γ(1+c− f )Γ(1− f+a) (C.7)

×
(

Fn (4;0,2)
Γ(s)Γ( f )Γ(1− f )

+
Fp (5;0,4)

Γ(b)Γ(c)Γ(a)

)
.

Surprisingly, the third equation [3, Eq. 7.4.4(6)] cited above, once parsed in the same
manner turns out to be equivalent to (C.7) with the change Fp (4;0,2) = Fp (4;2,3)
and is therefore not independent, although when expanded in its full glory, this is not
evident.

Finally, it is noted that three more independent equations between the Fn and Fp

functions can be found by changing the signs of the ri terms in [21, Eq. (13)]. This
has the effect of redefining the parameters αlmn → 1−αlmn and βmn → 2−βmn in the
various tables, as well as converting Fp(u) � Fn(u) and s→ 1−s . Thus (C.5) becomes

Fn (0) = − π Γ(a)
sin(π (1+b−c))

(C.8)

×
(

Fp (2)
Γ(1−e+b)Γ(1− f+b)Γ(1−c)

− Fp (3)
Γ(1+c−e)Γ(1+c− f )Γ(1−b)

)
,

this time omitting the superfluous second and third parameters from Fp(0),Fp(2) and
Fp(3) , yet retaining all combinations of parameters in a form that a patient reader could
identify as αlmn or βmn from Luke’s Tables. Similarly, (C.6) and (C.7) become

Fn (0) =
π Γ(e−c)

sin(π (1+e−b−a))
(C.9)

×
(

Fp (5)
Γ(1−e+b)Γ(1−e+a)Γ(1−s)

− Fp (3)
Γ(1−b)Γ(1+c− f )Γ(1−a)

)

and

Fn (0) = Γ(−b+ f )Γ( f−c)Γ( f−a)
(
− sin(π f )Fp (4)

π Γ(1−s)
+

Fn (5)
Γ(1−b)Γ(1−c)Γ(1−a)

)
.

(C.10)

A collection consisting of six such equations is sufficient to interrelate all pos-
sible three-term relations among 120 3F2(1) that can be identified as Fp(u) and/or
Fn(u) [4, Section 4.3.2]. Luke [21, Eq. 3.13(26)] and Slater [4, Eq. (4.3.2.5)] go on
to reproduce an example from Bailey that uses the above to relate Fn(0),Fp(0) and
Fp(5) algebraically. Luke does not say which six equations he used. Similarly, at this
same point, Slater refers to “the relation corresponding to [4, Eq. 4.3.2.1)] which con-
nects Fp(5),Fn(0) and Fn(2) . . . ” but she never identifies the corresponding relation.
Both references in Luke and Slater correspond to (C.5) here. It is reasonable, but not
assured, to assume that Slater, Luke (and Bailey) based this example on the three well-
established 3-part relations [3, Eqs. 7.4.4(3) -(5)] that gave rise to the above (Note:
Bailey refers to Hardy and Whipple in a footnote at this point but also does not say
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which equations were used); Slater [4, Eq. (4.3.2.4)] identifies one. How are other
relations found?

Dealing with the case of Fn(1) and Fp(1) (missing from all six of the above), note
that Fn(1;u,v) and Fn(2;u,v) are related by an interchange of two of a,b or c . For
example, under the (symmetric) exchange a � b , (C.5) becomes

Fp (0) =
π Γ(1−b)

sin (π (a−c))

(
− Fn (1)

Γ(−a+e)Γ( f−a)Γ(c)
+

Fn (3)
Γ(e−c)Γ( f−c)Γ(a)

)
(C.11)

along with its complement

Fn (0) (C.12)

=
π Γ(b)

sin(π (a−c))

(
Fp (1)

Γ(1−e+a)Γ(1− f+a)Γ(1−c)
− Fp (3)

Γ(1+c−e)Γ(1+c− f )Γ(1−a)

)
.

and this establishes that all the basic functions Fn and Fp are at least accessible from
the independent relations. When written in labelled form (C.11) becomes

Fp (0) =
π Γ(α013)
sin(π β13)

(
Fn (1)

Γ(α234)Γ(α235)Γ(α345)
− Fn (3)

Γ(α214)Γ(α215)Γ(α145)
.

)
(C.13)

Notice that (C.4) and (C.13), related by the interchange a � b , are equivalently related
by the interchange of the numeric labels 1 � 2; this demonstrates the fundamental
basis of the notation – the equality of the six equations chosen as a basis is invariant
under interchange of numeric labels. With this understanding, all other relationships
can be found. For example, consider the independently derived result (B.8)

Fp (0) =
(

sin(π e)Fn (2)
π Γ( f−b)

+
Fp (4)

Γ(e−c)Γ(−a+e)Γ(b)

)
Γ(1−c)Γ(1−a)Γ(1−e+b)

(C.14)
along with its complement

Fn (0) =
(

Fn (4)
Γ(1+c−e)Γ(1+a−e)Γ(1−b)

−sin (π e)Fp (2)
π Γ(1− f+b)

)
Γ(c)Γ(a)Γ(−b+e) .

(C.15)
To demonstrate that (C.14) can be obtained from one (or more) of the six indepen-

dent relations given above, start with (C.7), written in labelled form

Fp (0) =
(

sin(π β50)Fn (4)
Γ(α123)π

+
Fp (5)

Γ(α245)Γ(α345)Γ(α145)

)
Γ(α024)Γ(α014)Γ(α034) .

(C.16)
Interchange all labels 4 � 2 followed by the interchange 5 � 4 to find

Fp (0) =
(

sin(π β40)Fn (2)
Γ(α153)π

+
Fp (4)

Γ(α524)Γ(α324)Γ(α124)

)
Γ(α012)Γ(α052)Γ(α032)

(C.17)
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which, when written in terms of the basic parameters, is identifiable as (C.14).
To derive (B.7) is more interesting. Written in this notation, (B.7) becomes

Fp (0) =
sin(π e)sin(π f )Γ(1−a)Γ(1−b)Γ(1−c)

sin(π (e− f ))
(C.18)

×
(

Fp(4)
sin(πe)Γ(−b+e)Γ(e−c)Γ(−a+e)

− Fp(5)
sin(π f )Γ(−b+ f )Γ( f−c)Γ( f−a)

)

and its derivation from any one of the six independent relations by interchanging labels
becomes questionable, because none of them individually relate three Fp functions.
Choose (C.8) and (C.9) as a convenient staring point, equate the right-hand sides of
both and solve for Fp(2) . Written in labelled notation, the solution is

Fp (2) =
(

1
Γ(α035)

+
Γ(α124)sin (π β23)

Γ(α145)Γ(α023)sin(π β35)

)
Γ(α012)Γ(α024)Γ(α025)

Γ(α034)Γ(α013)
Fp (3)

−Fp (5)
Γ(α124)sin(π β23)Γ(α024)Γ(α012)
Γ(α045)sin(π β35)Γ(α015)Γ(α145)

. (C.19)

Now perform the interchange of numeric labels 3 � 4, followed by the interchange
0 � 2, revert to the representation in terms of the underlying parameters, and after
some simplification, (C.18) will be found.

In the section dealing with the generalization of Shpot and Srivastava’s result
(B.3), it was claimed that their [18, Eq.(31)] (see (D.11)) could easily be obtained
from the “well known” result (B.5). A quick scan of [21, Table 3.5] shows that the two
3F2(1) appearing in (B.5) can be identified as Fn(2;3,1) and Fn(3;1,2) as discussed
above. Simple substitution into (C.5) will yield (B.5), justifying the remark that it is
at least a “known”, if not a “well known”, result. In the case of Paris and Miller, their
extended result (B.2) once parsed as discussed here can be written

Fp (0) =
(

sin(π e)Fn (3)
π Γ( f−c)

+
Fp (4)

Γ(−b+e)Γ(−a+e)Γ(c)

)
Γ(1+c−e)Γ(1−b)Γ(1−a)

(C.20)
where specifically Fp(0) = Fp(0;4,5),Fp(4) = Fp(4;1,2) and Fn(3) = Fn(3;1,2) . To
derive (C.20) from the above, solve for Fn(2) in (C.5) and substitute into (C.14). So in
the sense discussed here (C.20) is a known result.

D. A collection of 3F2(1) , 4F3(1) and some lemmas

The following is a collection of relevant results gathered from sources scattered
throughout the literature, plus a few lemmas.

• Minton Karlsson

Minton [11] and Karlsson [12] show that, when a top parameter exceeds a bottom
parameter by a positive integer n , the order of any p+1Fp(1) can be reduced by
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one and replaced by a sum of n terms. In the case p = 3, this gives

4F3(a,b,c,e+n; e, f ,g; 1) (D.1)

=
Γ(1+n)Γ(e)Γ( f )Γ(g)

Γ(a)Γ(b)Γ(c)

×
n

∑
k=0

Γ(k+a)Γ(b+k)Γ(c+k) 3F2(k+a,b+k,c+k; f+k,g+k; 1)
Γ(k+1)Γ(1+n−k)Γ(e+k)Γ( f+k)Γ(g+k)

.

See also [14].

• Sheppard-Andersen Theorem

Based on [24, Corollary 3.3.4], the general result for a k-balanced, terminating
3F2(1) is given by

3F2(a,b,−n; c,k−n+a+b−c; 1) (D.2)

= −π (−1)n Γ(a−c+1)(−1)k Γ(k−n+a+b−c)Γ(n+1)Γ(k)Γ(c)
sin(π (c−b))Γ(k−n+b−c)Γ(k+b−c+a)Γ(n+c)Γ(a)

×
N

∑
j=0

Γ(a+ j)
Γ(1+n− j)Γ(−b+c−k+1+ j)Γ(a−n−c+1+ j)Γ(1+ j)Γ(k− j)

where N = min(k−1,n) . In the case k = 2 a simpler result [25, Eq. (2.9),
misprinted] is

3F2(a,b,−n; c,2−n+a+b−c; 1) (D.3)

=
Γ(−b+c+n−1)Γ(n+c−a)Γ(c−a−b−1)Γ(c)
Γ(c−b−1)Γ(c−a)Γ(−b+c+n−1−a)Γ(n+c)

(
1− na

(c−b−1)(−a+n+c−1)

)

REMARK. The result (D.2) is usually referenced in the literature to an inacces-
sible paper by Sheppard [26], where it is also usually noted that Andersen [27]
obtained (D.3) independently. In fact, Andersen obtained the following result
(transcribed in hypergeometric notation)

3F2(1,a,m+b; 2+m,a+b; 1) (D.4)

=
(−1)m sin(π a)sin (π b)Γ(1−b−m)Γ(b+a)Γ(−a+1)Γ(2+m)

(−m+a−1)π2 (b−1)

− (1+m)(b+a−1)
(−m+a−1)(b−1)

and a similar result for the case where the bottom parameter is a+b+1, both of
which are special cases of [17, Entry 28].
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• Whipples tranformation

The result (D.2) is based upon the following transformation of a terminating 1-
balanced 4F3(1) due to Whipple (1926) (see [24, Theorem 3.3.3])

4F3(a,b,c,−n; d,e, f ; 1) (D.5)

=
Γ(n+e−a)Γ(n+ f−a)Γ(e)Γ( f )4F3(a,−n,d−b,d−c;d,a+1−n− f ,a+1−n−e;1)

Γ(e−a)Γ( f−a)Γ(n+e)Γ(n+ f )

where f = a+b+ c+1−d− e−n .

Suppose d = c−1. Then (D.5) gives the following result for a special (Minton-
Karlsson), 1-balanced, terminating 4F3(1)

4F3 (−n,a,b,c;c−1,e,a+b+2−n−e;1) (D.6)

= A
Γ(a+b+2−n−e)Γ(n+e−a−1)Γ(b+1−e)Γ(e)

Γ(b+2−n−e)Γ(a+b+2−e)Γ(n+e)Γ(e−a)

where

A = −e2+(a+b−n+2)e−(b+1)(a−c+1)(n−1)
c−1

+
(−b−1+n)ac

c−1
. (D.7)

Other variations are apparent.

• A special q+1 Fq(1)

Prudnikov et. al. [3, Eq. 7.10.2(6)] give the following general result

q+1 Fq (a,b, . . . ,b; b+1, . . . ,b+1; 1)=
(−1)q−1 bqΓ(1−a)

(q−1)!
∂ q−1

∂bq−1

(
Γ(b)

Γ(1+b−a)

)
.

(D.8)

When q = 4 and b = 1, we find

(1−a)5F4(1,1,1,1,a; 2,2,2,2; 1) (D.9)

= 1/6 (Ψ(2−a)+γ)3

+
(
1/12π2−1/2Ψ′ (2−a)

)
(Ψ(2−a)+γ)+1/3ζ (3)+1/6Ψ(2) (2−a)

and similarly with q = 5,

(1−a)6F5(1,1,1,1,1,a; 2,2,2,2,2; 1) (D.10)

= 1/8Ψ′ (2−a)2 +
π4

160
−1/24Ψ(3) (2−a)

+1/24 (Ψ(2−a)+γ)4 +
(
1/3ζ (3)+1/6Ψ(2) (2−a)

)
(Ψ(2−a)+γ)

−
(
1/4 (Ψ(2−a)+γ)2 +1/24π2

)
Ψ′ (2−a)+1/24π2 (Ψ(2−a)+γ)2 .
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• A result from Shpot and Srivastava [18]

The following reproduces [18, Eq. (31)]

3 F2 (a,b,c; b+1+m,c+1+n; 1)Γ(b)Γ(c)
Γ(b+1+m)Γ(c+1+n)

= T (a,b,c,m,n)+T (a,c,b,n,m)

(D.11)
where

T (a,b,c,m,n) =
Γ(b)Γ(1−a)Γ(c−b) 3 F2 (b,−m,b−c−n; 1+b−a,1+b−c; 1)

Γ(1+b−a)Γ(n+1+c−b)Γ(m+1)
(D.12)

• From a previous work [28, Theorem 2.2]

4F3(1,1,1,1; 2,2,d; 1) (D.13)

= (d−1)
(

Ψ(2) (d−1)/2−(Ψ′ (d−1)+π2/6
)
(γ+Ψ(d−1))

+2ζ (3)− 1
Γ(2−d)

∞

∑
k=0

Ψ′ (k+2)Γ(3−d+k)
Γ(1+k)(1+k)2

)

• Lemma 1

Because
n−1

∑
k=0

Γ(n+k−b)(−1)k

Γ(k+1)2 Γ(n−k)
=

Γ(n−b) 2 F1 (n−b,−n+1; 1; 1)
Γ(n)

= − (−1)n Γ(n−b)2

Γ(−b+1)Γ(n)2
,

(D.14)
differentiate with respect to b giving

n−1

∑
k=0

Γ(n+k−b)(−1)k Ψ(n+k−b)
Γ(k+1)2 Γ(n−k)

= − (−1)n π (−Ψ(1−b)+2Ψ(n−b))Γ(b)
sin(π b)Γ(n)2 Γ(−n+b+1)2 ,

(D.15)

• Lemma 2

From [17, Entry 13], corresponding to 3 F2 (1,1,a; 1+a,1+a; 1) , a case contigu-
ous to Whipple’s theorem we have

∞

∑
k=1

Γ(k)
(k+a−1)Γ(k+a)

=
Ψ′ (a/2)−Ψ′ (a/2+1/2)

2Γ(a)
, (D.16)

and, after differentiating with respect to a , we obtain
∞

∑
k=1

Γ(k)Ψ(k+a)
(k+a−1)Γ(k+a)

(D.17)

= −
∞

∑
k=1

Γ(k)

(k+a−1)2 Γ(k+a)

+
(Ψ′ (a/2)−Ψ′ (a/2+1/2))Ψ(a)/2−1/4Ψ(2) (a/2)+1/4Ψ(2) (a/2+1/2)

Γ(a)
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• Lemma 3

By adding and subtracting a term corresponding to k = −1, from its series rep-
resentation, we have

4 F3 (1,2,2−a,a+1; 3,3,3; 1) =
8π 4 F3 (1,1,a,1−a;2,2,2;1)
(1−a)Γ(1−a)Γ(a)asin(π a)

− 8
(1−a)a

(D.18)
so that, after the invocation of (??)

4F3(1,2,2−a,a+1; 3,3,3; 1) (D.19)

=
sin(π a)

a2 (a−1)2 π

(
16Ψ′ (a)−8Ψ′ (a/2)+8

a2−a+1

a2 (a−1)2

)

−16
Ψ(a+1)
a2 (a−1)2−16

γ
a2 (a−1)2 +8

a4−2a3+a2+2a−1

a3 (a−1)3 .

• Lemma 4

From [17, Entry 26] after evaluating some limits,

3F2(1,1,n; n+1,n+1; 1) (D.20)

= −
(

n−3

∑
k=0

(−1)kΨ(1+k)
Γ(n−k−1)(n−k−1)2Γ(1+k)

+
n−3

∑
k=0

(−1)k

Γ(n−k−1)(n−k−1)3Γ(1+k)

)
n2Γ(n)

+(−1)n
(

1/2−(Ψ(n)+1)n3+n2
(

γ2/2+2γ Ψ(n)+π2/12+3/2Ψ(n)2

+Ψ(n)−2Ψ′ (n)+1/2Ψ′ (n+1)+2

))

• Lemma 5

From [17, Entry 13] – contiguous to Whipples theorem, and a generalization of
(D.20)

3 F2 (1,1,a; a+1,a+1; 1) =
a2

4
Ψ′ (a/2+1)+

a2

4
Ψ′ (a/2)−a2

2
Ψ′ (a/2+1/2)+1

(D.21)
so that, after differentiating we obtain

∞

∑
k=1

Γ(k)Ψ(k+a)
(k+a−1)Γ(k+a)

(D.22)

= −
∞

∑
k=1

Γ(k)
(k+a−1)3 Γ(k+a−1)

+
2Ψ′ (a/2)Ψ(a)−2Ψ′ (a/2+1/2)Ψ(a)−Ψ(2) (a/2)+Ψ(2) (a/2+1/2)

4Γ(a)

For a comparison of (D.20) and (D.21), see (??).
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• Lemma 6

Trivially,

3 F2 (1,1,2−a; 2,2; 1) =
Ψ(a)+γ

Γ(a)
(D.23)

leading to
∞

∑
k=1

(−1)k Ψ(a−k)
k2Γ(k)Γ(a−k)

=
Ψ′ (a)
Γ(a)

−Ψ(a)2

Γ(a)
−γ

Ψ(a)
Γ(a)

(D.24)
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