ON MULTIPLE q-LAGUERRE POLYNOMIALS

P. Njionou Sadjang, J. C. Múnlúem Mouncharou and Salifou Mboutngam*

Abstract

We study q-Laguerre multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Laguerre weight functions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained and their explicit representations are given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we obtain the nearest neighbor recurrence relation using a q-analogue of the theorem 23.1.11 by M.E.H. Ismail in [12].

Mathematics subject classification (2020): 33C45, 33D45.
Keywords and phrases: Multiple q-orthogonal polynomials, multiple q-Laguerre polynomials, Rodrigues formula, q-difference equation, nearest neighbor recurrence relation.

REFERENCES

[1] R.Álvarez-Nodarse and J. Arvesú, On the q-polynomials in the exponential lattice, Integr. Transf. Spec. F. 8, (1999), 299-324.
[2] A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423-447.
[3] A. I. Aptekarev, J. Arvesú, Asymptotics for multiple Meixner polynomials, J. Math. Anal. Appl. 411 (2014), 485-505, arXv: 1207. 0463.
[4] J. Arvesú, J. Coussement, W. Van Assche, Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math. 153 (2003), 19-45.
[5] J. ARVESÚ, C. ESPOSITO, A high-order q-difference equation for q-Hahn multiple orthogonal polynomials, J. Difference Equ. Appl. 18 (2012), 833-847, http://dx.doi.org/10.1080/10236198.2010.524211.
[6] J. Arvesú, A. M. Ramírez-Aberasturis, On q-Charlier multiple orthogonal polynomials, Symmetry, Integrability and Geometry: Methods and Applications 11 (2015), Paper 026, 14 pp.
[7] B. Beckermann, J. Coussement, W. Van Assche, Multiple Wilson and Jacobi-Piñeiro polynomials, J. Approx. Theory 132 (2005) 155-181.
[8] M. Bender, S. Delvaux, A. B. J. Kuillaars, Multiple Meixner-Pollaczek polynomials and the six-vertex model, arXv:1101.2982v2.
[9] M. G. De Bruin, Simultaneous Padé approximation and orthogonality, in 'Polynomes Orthogonaux et Applications' (C. Brezinski et al. eds), Lecture Notes in Mathematics 1171, Springer-Verlag, Berlin, 1985, 74-83.
[10] M. G. DE Bruin, Some aspects of simultaneous rational approximation, in 'Numerical Analysis and Mathematical Modeling', Banach Center Publications 24, PWN-Polish Scientific Publishers, Warsaw, 1990, 51-83.
[11] E. Coussement, W. Van Assche, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), 317-347.
[12] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005 (paperback edition 2009).
[13] V. Kac, P. Cheung, Quantum calculus, Springer, (2001).
[14] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues, Springer, Berlin, 2010.
[15] D. W. LEE, Difference equations for discrete classical multiple orthogonal polynomials, J. Approx Theory 150 (2008) 132-152.
[16] K. Mahler, Perfect systems, Composition math. 19 (1968), 95-166.
[17] F. Ndayiragije, W. Van Assche, Asymptotics for the ratio and zeros of multiple Charlier polynomials, J. Approx Theory 164 (2012) 823-840, arXv:1108. 3918.
[18] A. F. Nikishin, V. N. Sorokin, Rational Approximants and Orthogonality, Translations of Mathematical Monographs 92, Amer. Math. Soc., Providence, RI (1991).
[19] P. Nionou Sadjang, S. Mboutngam, On fractional q-extensions of some q-orthogonals polynomials, Axioms 9 (2020), Axioms 2020, 9 (3), 97.
[20] J. P. NuWacu, W. VAN Assche, Multiple Askey-Wilson polynomials and related basic hypergeometric multiple orthogonal polynomials, arXv:1904.01252v1.
[21] K. Postelmans, W. Van Assche, Multiple q-Jacobi polynomials, J. Comput. Appl. Math. 178 (2005) 361-375.

