TOWARDS A WELL-DEFINED MEDIAN

AHMAD AL-SALMAN AND MOWAFFAQ HAJJA

Abstract. The diagonal Δ of \mathbb{R}^n is Chebeshev with respect to the *p*-norm for every $p \in (1, \infty]$ but not for p = 1. As a result, the median is multi-valued, since the median of a data set $\{a_1, \dots, a_n\}$ can be thought of as the number(s) μ for which the point (μ, \dots, μ) is a point on Δ that best approximates the point (a_1, \dots, a_n) with respect to the ℓ_1 -norm. In this note, it is proved that if (μ_p, \dots, μ_p) is the unique point on Δ that best approximates a fixed point (a_1, \dots, a_n) with respect to the ℓ_p -norm for $p \in (1, \infty]$, then as *p* decreases to 1, μ_p converges, and its limit is proposed to be called *the* median of $\{a_1, \dots, a_n\}$. Along the way, μ_p is shown to be continuous in *p* for all $p \in (1, \infty]$ in the sense that μ_p converges to μ_q as *p* goes to *q* for every $q \in (0, \infty]$.

Mathematics subject classification (2000): 26E60, 41A50, 41A52.

Key words and phrases: Median, mean, best approximation, convex, Chebeshev set, Fermat-Torricelli point.

REFERENCES

[1] Z. ABU-ABBAS, Private Communications, 1995.

- [2] F. GALVIN AND S. D. SHORE, *Distance functions and topology*, Amer. Math. Monthly, **98** (1991), 620–623.
- [3] M. HAJJA, Distance means and best approximation means: Some elementary questions, preprint.
- [4] Y. S. KUPITZ AND H. MARTINI, Geometric aspects of the generalized Fermat-Torricelli problem, Intuitive Geometry, Bolyai Society Mathematical Studies, Vol. 6, pp. 55–127, 1997.

© EMN, Zagreb Paper No. 01-03