FIXED POINTS AND GENERALIZED HYERS–ULAM
STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

CHOONKIL PARK AND THEMISTOCLES M. RASSIAS

Abstract. Let X, Y be complex vector spaces. It is shown that if a mapping $f : X \to Y$ satisfies
$$f(x + iy) + f(x - iy) = 2f(x) - 2f(y) \quad (0.1)$$
or
$$f(x + iy) - f(ix + y) = 2f(x) - 2f(y) \quad (0.2)$$
for all $x, y \in X$, then the mapping $f : X \to Y$ satisfies
$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$
for all $x, y \in X$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equations
(0.1) and (0.2) in complex Banach spaces.

Key words and phrases: Quadratic mapping, fixed point, quadratic functional equation, generalized
Hyers-Ulam stability.

REFERENCES

[1] C. BAAK, D. BOO AND TH. M. RASSIAS, Generalized additive mapping in Banach modules and
76–86.
Hamburg 62 (1992), 59–64.
[8] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,
222–224.