THE PROBABILISTIC STABILITY FOR A FUNCTIONAL NONLINEAR EQUATION IN A SINGLE VARIABLE

DOREL MIHET

Abstract. We use the fixed point method to prove the probabilistic Hyers–Ulam and generalized Hyers–Ulam–Rassias stability for the nonlinear equation \(f(x) = \Phi(x, f(\eta(x))) \) where the unknown is a mapping \(f \) from a nonempty set \(S \) to a probabilistic metric space \((X, F, T_M)\) and \(\Phi : S \times X \to X, \eta : S \to X \) are two given functions.

Keywords and phrases: Functional equation, fixed points, Hyers-Ulam stability, probabilistic metric space.

REFERENCES

On the stability of the functional equation $f(x + y - xy) + xf(y) + yf(x) = f(x) + f(y)$, Mathematical Inequalities and Appl. MIA, 7, 1 (2004), 79–85.

A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.

Fixed points of contraction mappings on PM-Spaces, Math. Syst. Theory, 6 (1972), 97–100.
