SUMS OF REAL PARTS OF EIGENVALUES OF PERTURBED MATRICES

M. I. Gil’

Abstract. Let A be a $n \times n$ matrices, whose eigenvalues are λ_k and $\tilde{\lambda}_k$, respectively. Assuming that A is Hermitian, we prove the inequality

$$\left[\sum_{k=1}^{n} |\text{Re } \tilde{\lambda}_k - \lambda_k|^{p} \right]^{1/p} \leq N_p(E_R) + \tilde{b}_p N_p(E_I) \quad (2 \leq p < \infty)$$

where $N_p(A)$ is the Schatten-von Neumann norm of A, $E = \tilde{A} - A$, $E_R = (E + E^*)/2$, $E_I = (E - E^*)/2i$, and $\tilde{b}_p \leq p e^{1/3}$. That inequality is generalized then to the Schatten-von Neumann operators.

Keywords and phrases: Matrices, inequalities for eigenvalues, Schatten-von Neumann ideals.

REFERENCES