THE OPTIMAL POWER MEAN BOUNDS FOR TWO CONVEX COMBINATIONS OF $A-G-H$ MEANS

ALEKSANDRA ČIŽMEŠIJA

Abstract. For $p \in \mathbb{R}$, let $M_p(a,b)$ denote the usual power mean of order p of positive real numbers a and b, and let $A = M_1$, $G = M_0$ and $H = M_{-1}$. We prove that the inequalities $M_0(a,b) \leq \frac{1}{3}[A(a,b) + G(a,b) + H(a,b)] \leq M_\infty(a,b)$ and $M_{-\frac{1}{6}}(a,b) \leq \frac{1}{2}[He(a,b) + H(a,b)] \leq M_{\infty}(a,b)$ hold for all positive real numbers a and b, with strict inequality for $a \neq b$, and that the orders of power means involved are optimal.

Keywords and phrases: Arithmetic mean, geometric mean, harmonic mean, power mean, Heronian mean, sharp inequality.

REFERENCES