ON IMPROVED ARITHMETIC-GEOMETRIC MEAN AND HEINZ INEQUALITIES FOR MATRICES

CHUANJIANG HE, LIMIN ZOU AND SHAHID QAISAR

Abstract. In this paper, we first generalize an inequality and improve another one for unitarily invariant norms, which are established by Kittaneh and Manasrah in [Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl.361(2010)262-269]. Then we present a new inequality for unitarily invariant norms, which is equivalent to an inequality presented by Kittaneh and Manasrah in the case of the Hilbert-Schmidt norm.

Mathematics subject classification (2010): 15A18, 15A42, 15A60.

Keywords and phrases: unitarily invariant norms, arithmetic-geometric mean inequality, Heinz inequality, positive semidefinite matrix.

REFERENCES

- F. KITTANEH, Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), 262–269.
- [2] R. BHATIA, C. DAVIS, *More matrix forms of the arithmetic-geometric mean inequality*, SIAM J. Matrix Anal. Appl. **14** (1993), 132–136.
- [3] F. KITTANEH, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys. 27 (1993), 279–285.
- [4] H. KOSAKI, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal. 156 (1998), 429–451.
- [5] R. BHATIA, K. R. PARTHASARATHY, Positive definite functions and operator inequalities, Bull. London Math. Soc. 32 (2000), 214–228.
- [6] R. BHATIA, Interpolating the arithmetic-geometric mean inequality and its operator version, Linear Algebra Appl. 413 (2006), 355–363.
- [7] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.
- [8] S. WANG, L. ZOU, Y. JIANG, Some inequalities for unitarily invariant norms of matrices, J. Inequal. Appl. (2011), 2011:10.
- [9] R. BHATIA, R. SHARMA, Some inequalities for positive linear maps, Linear Algebra Appl. 436 (2012), 1562–1571.