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GENERALIZED MINTY PREVARIATIONAL INEQUALITY,

INVEX–INCREASE–ALONG–RAYS PROPERTY AND

INVEX–STAR–SHAPED OPTIMIZATION PROBLEM

RONG HU

Abstract. The purpose of this paper is to study some relations between generalized Minty pre-
variational inequalities, invex-increase-along-rays properties, and invex-star-shaped optimiza-
tion problems. We introduce the concepts of invex-star-shaped sets and invex-increase-along-
rays functions, and establish the relations between invex-increase-along-rays properties and
invex-star-shaped optimization problems. Further, under certain conditions, we investigate the
relations between invex-increase-along-rays properties and generalized Minty prevariational in-
equalities. As consequences, we obtain the equivalence of generalized Minty prevariational
inequalities and invex-star-shaped optimization problems under suitable conditions. Finally, we
prove the equivalence of generalized Minty prevariational inequalities and perturbed generalized
Minty prevariational inequalities.
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