OPTIMAL INEQUALITIES FOR THE CONVEX COMBINATION OF ERROR FUNCTION

WEIFENG XIA AND YUMING CHU

Abstract. For $\lambda \in (0,1)$ and $x, y > 0$ we obtain the best possible constants p and r, such that
$$\text{erf}(M_p(x, y; \lambda)) \leq \lambda \text{erf}(x) + (1 - \lambda) \text{erf}(y) \leq \text{erf}(M_r(x, y; \lambda))$$
where $\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ and $M_p(x, y; \lambda) = (\lambda x^p + (1 - \lambda) y^p)^{1/p} (p \neq 0)$, $M_0(x, y; \lambda) = x^\lambda y^{1-\lambda}$ are error function and weighted power mean, respectively. Furthermore, using these results, we generalized and complement an inequality due to Alzer.

Keywords and phrases: Error function, power mean, functional inequalities.

REFERENCES

[33] S. Morosawa, The parameter space of error functions of the form \(a \int_0^z e^{-w^2} dw\), Complex analysis and potential theory (2007), 174–177.

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com