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INEQUALITIES FOR THE GENERALIZED TRIGONOMETRIC,

HYPERBOLIC AND JACOBIAN ELLIPTIC FUNCTIONS

EDWARD NEUMAN

Abstract. This paper deals with the inequalities for the generalized trigonometric, hyperbolic and
the Jacobian elliptic functions. These families of higher transcendental functions are of great
importance in the studies of some problems that arose in the theory of differential equations.
Among the main results established in this paper the Wilker- and Huygens- type inequalities for
the functions under discussion are obtained.
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applications, Publ. Math. Debrecen 75(2009), No. 3–4, 447–458.
[45] S.-H. WU, H. M. SRIVASTAVA,A weighted and exponential generalization of Wilker’s inequality and

its applications, Integral Transform. Spec. Funct. 18 (2007), No. 8, 525–535.
[46] L. ZHU, A new simple proof of Wilker’s inequality, Math. Inequal. Appl. 8 (2005), No. 4, 749–750.
[47] L. ZHU, On Wilker-type inequalities, Math. Inequal. Appl. 10 (2007), No. 4, 727–731.
[48] L. ZHU, Some new Wilker type inequalities for circular and hyperbolic functions, Abstract Appl.

Analysis, Vol. 2009, Article ID 485842, 9 pages.

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


