SHARP LEHRER MEAN BOUNDS FOR NEUMAN MEANS WITH APPLICATIONS

YU-MING CHU AND WEI-MAO QIAN

Abstract. In the article, we present the best possible parameters \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) and \(\beta_1, \beta_2, \beta_3, \beta_4 \) such that the double inequalities

\[
L_{\alpha_1}(a, b) < N_{AG}(a, b) < L_{\beta_1}(a, b), \quad L_{\alpha_2}(a, b) < N_{GA}(a, b) < L_{\beta_2}(a, b), \\
L_{\alpha_3}(a, b) < N_{QA}(a, b) < L_{\beta_3}(a, b), \quad L_{\alpha_4}(a, b) < N_{AQ}(a, b) < L_{\beta_4}(a, b)
\]

hold for all \(a, b > 0 \) with \(a \neq b \), where \(L_p(a, b) = \left(a^{p+1} + b^{p+1} \right) / (a^p + b^p) \) is the \(p \)th Lehmer mean, and \(N_{AG}(a, b), N_{GA}(a, b), N_{QA}(a, b) \) and \(N_{AQ}(a, b) \) are the Neuman means. As applications, we find several sharp inequalities involving the hyperbolic, trigonometric and inverse trigonometric functions.

Mathematics subject classification (2010): 26E60, 26D05, 26D07.

Keywords and phrases: Neuman mean, Lehmer mean, Schwab-Borchardt mean, geometric mean, arithmetic mean, quadratic mean, hyperbolic function, trigonometric function, inverse trigonometric function.

REFERENCES