INITIAL COEFFICIENT BOUND FOR m–FOLD
SYMmetric BI–λ–CONvEX FUNCTIONS

S. SIVASUBRAMANIAN AND R. SIVAKUMAR

Abstract. Let the functions $f(z) = z + a_2z^2 + \cdots$ and its inverse f^{-1} be analytic and univalent in the unit disk. Such class of functions are called bi-univalent and denoted by σ [9]. In an article, Pommerenke [10] remarked that, for an m-fold symmetric functions in the class \mathcal{P}, the well known lemma stated by Caratheody for a one fold symmetric functions in \mathcal{P} still holds good. Making use of this remark, we introduce two new subclasses of bi-univalent functions in which both f and $f^{-1} = g$ are m-fold symmetric analytic functions with $(1 - \lambda)\frac{zf''(z)}{f'(z)} + \lambda \left(1 + \frac{zg''(w)}{g'(w)}\right)$ and $(1 - \lambda)\frac{wg''(w)}{g'(w)} + \lambda \left(1 + \frac{wzg''(w)}{g'(w)}\right)$ in \mathcal{P} and obtain coefficient bounds for functions in this new classes.

Keywords and phrases: Analytic functions, univalent functions, bi-univalent functions, m-fold symmetric functions, m-fold symmetric bi-univalent functions, λ-convex functions, bi-λ-convex functions.

REFERENCES

