COMMUTATORS OF MARCINKIEWICZ INTEGRALS
ASSOCIATED WITH SCHRÖDINGER OPERATOR
ON GENERALIZED WEIGHTED MORREY SPACES

VAGIF S. GULIYEV, ALI AKBULUT, VUGAR H. HAMZAYEV AND OKAN KUZU

Abstract. Let $L = -\Delta + V$ be a Schrödinger operator, where Δ is the Laplacian on \mathbb{R}^n, while nonnegative potential V belongs to the reverse Hölder class. Let also $\Omega \in L_q(S^{n-1})$ be a homogeneous function of degree zero with $q > 1$ and have a mean value zero on S^{n-1}. In this paper, we study the boundedness of the Marcinkiewicz operators $\mu_{j,\Omega}^L$ and their commutators $\mu_{j,\Omega, b}$ with rough kernels associated with Schrödinger operator on generalized weighted Morrey spaces $M_p,\varphi(w)$. We find the sufficient conditions on the pair (φ_1, φ_2) with $q' < p < \infty$ and $w \in A_p/q'$ or $1 < p < q$ and $w^{1-p'} \in A_{p'/q'}$ which ensures the boundedness of the operators $\mu_{j,\Omega}^L$ from one generalized weighted Morrey space $M_{p,\varphi_1}(w)$ to another $M_{p,\varphi_2}(w)$ for $1 < p < \infty$. We find the sufficient conditions on the pair (φ_1, φ_2) with $b \in BMO(\mathbb{R}^n)$ and $q' < p < \infty$, $w \in A_{p'/q'}$ or $1 < p < q$, $w^{1-p'} \in A_{p'/q'}$ which ensures the boundedness of the operators $\mu_{j,\Omega, b}^L$, $j = 1, \ldots, n$ from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$ for $1 < p < \infty$. In all cases the conditions for the boundedness of the operators $\mu_{j,\Omega}^L$, $\mu_{j,\Omega, b}^L$, $j = 1, \ldots, n$ are given in terms of Zygmund-type integral inequalities on (φ_1, φ_2) and w, which do not assume any assumption on monotonicity of $\varphi_1(x, r)$, $\varphi_2(x, r)$ in r.

Keywords and phrases: Marcinkiewicz operator, rough kernel, Schrödinger operator, generalized weighted Morrey spaces, commutator, A_p weights.

REFERENCES

