INTERPOLATION COEFFICIENTS MIXED FINITE
ELEMENT METHODS AND L^∞–ERROR ESTIMATES
FOR NONLINEAR OPTIMAL CONTROL PROBLEM

ZULIANG LU, SHUHUA ZHANG, LONGZHOU CAO, LIN LI AND YIN YANG

Abstract. In this paper, we investigate L^∞-error estimates for the convex optimal control problem governed by nonlinear elliptic equations using interpolation coefficients mixed finite element methods. By using the interpolation coefficient thought to process the nonlinear term of equations, we present the mixed finite element approximation with interpolated coefficients for nonlinear optimal control problem. We derive L^∞-error estimates for the interpolation coefficients mixed finite element approximation of nonlinear optimal control problem. Finally some numerical examples are given to confirm our theoretical results.

Keywords and phrases: Nonlinear optimal control problem, interpolation coefficients, mixed finite element methods, L^∞-error estimates.

REFERENCES

