SOME GENERALIZATIONS OF NUMERICAL RADIUS ON
OFF–DIAGONAL PART OF 2 × 2 OPERATOR MATRICES

MONIRE HAJMOHAMADI, RAHMATOLLAH LASHKARIPOUR
AND MOJTABA BAKHERAD

Abstract. We generalize several inequalities involving powers of the numerical radius for off-
diagonal part of 2 × 2 operator matrices of the form

\[T = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}, \]

where \(B, C \) are two operators.

In particular, if \(T = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \), then we get

\[
\frac{1}{2^r(r-1)} \max \{ \| \mu \|, \| \eta \| \} \leq w^r(T) \leq \frac{1}{2^r+1} \max \{ \| \mu \|, \| \eta \| \},
\]

where \(r \geq 2 \), \(\mu = |(C - B^*) + i(C + B^*)| + |(B^* - C) + i(C + B^*)| \) and \(\eta = |(B - C^*) + i(B + C^*)| + |(C^* - B) + i(B + C^*)| \).

Keywords and phrases: Cartesian decomposition, Jensen inequality, numerical radius, off-diagonal
part, operator mean, operator matrix, positive operator, Young inequality.

REFERENCES

[1] A. ABU-OMAR AND F. KITTANEH, Estimates for the numerical radius and the spectral radius of the
[3] Y. AL-MANASRAH AND F. KITTANEH, A generalization of two refined Young inequalities, Positivity
(2) (1988), 283–293.
[8] F. KITTANEH, A numerical radius inequality and an estimate for the numerical radius of the Frobenius
no. 1, 73–80.
[10] F. KITTANEH, M. S. MOSLEHIAN AND T. YAMAZAKI, Cartesian decomposition and numerical
for Hilbert space operators, Linear Algebra Appl. 470 (2014), 1–12.