A NEW CHARACTERIZATION OF CONVEXITY WITH RESPECT TO CHEBYSHEV SYSTEMS

Zsolt Páles and Éva Székelyné Radácsi

Abstract. The notion of nth order convexity in the sense of Hopf and Popoviciu is defined via the nonnegativity of the $(n + 1)$st order divided differences of a given real-valued function. In view of the well-known recursive formula for divided differences, the nonnegativity of $(n + 1)$st order divided differences is equivalent to the $(n - k - 1)$st order convexity of the kth order divided differences which provides a characterization of nth order convexity.

The aim of this paper is to apply the notion of higher-order divided differences in the context of convexity with respect to Chebyshev systems introduced by Karlin in 1968. Using a determinant identity of Sylvester, we then establish a formula for the generalized divided differences which enables us to obtain a new characterization of convexity with respect to Chebyshev systems. Our result generalizes that of Wąsowicz which was obtained in 2006. As an application, we derive a necessary condition for functions which can be written as the difference of two functions convex with respect to a given Chebyshev system.

Keywords and phrases: Chebyshev system, generalized convexity, generalized divided difference.

REFERENCES