FRACTIONAL INTEGRAL ASSOCIATED WITH SCHRÖDINGER OPERATOR ON VANISHING GENERALIZED MORREY SPACES

Ali Akbulut, Ramin V. Guliyev, Suleyman Celik and Mehriban N. Omarova

Abstract. Let $L = -\Delta + V$ be a Schrödinger operator, where the non-negative potential V belongs to the reverse Hölder class $R\text{H}_{n/2}$, let b belong to a new $BMO_{\theta}(\rho)$ space, and let I^L_β be the fractional integral operator associated with L. In this paper, we study the boundedness of the operator I^L_β and its commutators $[b, I^L_\beta]$ with $b \in BMO_{\theta}(\rho)$ on generalized Morrey spaces associated with Schrödinger operator $M^{\alpha_V}_p, \phi$ and vanishing generalized Morrey spaces associated with Schrödinger operator $VM^{\alpha_V}_p, \phi$. We find the sufficient conditions on the pair (ϕ_1, ϕ_2) which ensures the boundedness of the operator I^L_β from $M^{\alpha_V}_p, \phi_1$ to $M^{\alpha_V}_q, \phi_2$ and from $VM^{\alpha_V}_p, \phi_1$ to $VM^{\alpha_V}_q, \phi_2$. When b belongs to $BMO_{\theta}(\rho)$ and (ϕ_1, ϕ_2) satisfies some conditions, we also show that the commutator operator $[b, I^L_\beta]$ is bounded from $M^{\alpha_V}_p, \phi_1$ to $M^{\alpha_V}_q, \phi_2$ and from $VM^{\alpha_V}_p, \phi_1$ to $VM^{\alpha_V}_q, \phi_2$.

Keywords and phrases: Fractional integral associated with Schrödinger operator, commutator, BMO, vanishing generalized Morrey space associated with Schrödinger operator.

REFERENCES

