ADDITIVE s–FUNCTIONAL INEQUALITIES AND PARTIAL MULTIPLIERS IN BANACH ALGEBRAS

CHOONKIL PARK

Abstract. In this paper, we solve the additive s–functional inequalities

$$
\|f(x+y+z) - f(x) - f(y) - f(z)\| \leq \|s(f(x-y) + f(y-z) - f(x-z))\|,
$$

(0.1)

where s is a fixed nonzero complex number with $|s| < 1$, and

$$
\|f(x-y) + f(y-z) - f(x-z)\| \leq \|s(f(x+y-z) - f(x) - f(y) - f(z))\|,
$$

(0.2)

where s is a fixed nonzero complex number with $|s| < 1$.

Furthermore, we prove the Hyers-Ulam stability of the additive s–functional inequalities (0.1) and (0.2) in complex Banach spaces. This is applied to investigate partial multipliers in Banach $*$-algebras and unital C^*-algebras, associated with the additive s–functional inequalities (0.1) and (0.2).

Keywords and phrases: Partial multiplier in C^*-algebra, Hyers-Ulam stability, additive s–functional inequality.

REFERENCES