OPTIMAL BOUNDS FOR THE SÁNDOR MEAN IN TERMS OF THE COMBINATION OF GEOMETRIC AND ARITHMETIC MEANS

WEI-MAO QIAN, CHUN-LIN MA AND HUI-ZUO XU*

Abstract. In this paper, we prove that \(\lambda = 1/2 - \sqrt{1 - e^{-2/p}/2} \) and \(\mu = 1/2 - \sqrt{6p/(6p)} \) are the best possible parameters on the interval \((0, 1/2)\) such that the double inequalities

\[
G^p [\lambda a + (1 - \lambda) b, \lambda b + (1 - \lambda) a] A^{1-p} (a, b) < X (a, b)
\]

\[
< G^p [\mu a + (1 - \mu) b, \mu b + (1 - \mu) a] A^{1-p} (a, b)
\]

hold for all \(p \in [1, \infty) \) and \(a, b > 0 \) with \(a \neq b \), where \(G(a, b) \) is the geometric mean, \(A(a, b) \) is the arithmetic mean, and \(X (a, b) \) is the Sándor mean.

Keywords and phrases: Sándor mean, geometric mean, arithmetic mean, inequality.

REFERENCES