A NEW GENERALIZED REFINEMENTS OF YOUNG’S INEQUALITY AND APPLICATIONS

Mohamed Amine Ighachane and Mohamed Akkouchi

Abstract. In this work, by the weighted arithmetic-geometric mean inequality, we show if \(a, b > 0 \) and \(0 \leq \nu \leq 1 \). Then for all positive integer \(m \), we have

\[
\left(a^\nu b^{1-\nu}\right)^m + r_0^m \left((a+b)^m - 2^m(ab)^\frac{m}{2}\right) + r_m \left(\left((ab)^{\frac{m}{2}} - b^{\frac{m}{2}}\right)^2 \chi_{(0,\frac{1}{2})}(\nu) + \left((ab)^{\frac{m}{2}} - a^{\frac{m}{2}}\right)^2 \chi_{(\frac{1}{2},1)}(\nu)\right) \leq \left(va + (1-v)b\right)^m,
\]

where \(r_0 = \min\{\nu, 1-\nu\}, \ r_m = \min\{2^m r_0^m, (1-r_0)^m - r_0^m\} \) and \(\chi(\nu) \) the characteristic function. This inequality provides a generalization of an important refinement of the Young inequality obtained by J. Zhao and J. Wu. As applications we give some new generalized refinements of Young type inequalities for the determinants, \(p \)-norms and traces, of positive \(\tau \)-measurable operators.

Keywords and phrases: AM-GM inequality, Young’s inequality, von Neumann algebras, determinants, \(p \)-norms, trace.

REFERENCES

