## SOME NEW IMPROVEMENTS OF YOUNG'S INEQUALITIES

## Changsen Yang and Zhenquan Wang

Abstract. In this paper, we obtain some improvements and generalizations of Young's inequalities as the following:
(1) If $b \geqslant a$, we can get

$$
\frac{\left(a \nabla_{v} b\right)^{m}-\left(a \not{ }_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-(a \sharp \tau)^{m}} \leqslant \frac{v(1-v)}{\tau(1-\tau)} ;
$$

(2) If $b \leqslant a$, we can get

$$
\frac{\left(a \nabla_{v} b\right)^{m}-\left(a \not \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-(a \sharp \tau)^{m}} \geqslant \frac{v(1-v)}{\tau(1-\tau)}
$$

for $m \in N_{+}$and $0<v \leqslant \tau<1$. In addition, we obtain new result of Young's inequality by using the expansions of the functions $(1-v)+v x-x^{v}$ with $0<x<2$.

Mathematics subject classification (2020): 26D07, 15A15, 15A42, 15A60.
Keywords and phrases: Young's inequalities, Kantorovich constant, Newton's binomial expansion.

## REFERENCES

[1] H. Alzer, M. Carlos and A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63, 3 (2015), 622-635, https://doi.org/10.1080/03081087.2014.891588.
[2] C. He, L. Zou, Some inequalities involoving unitarily invariant norms, Math. Inequal. Appl., 12 (2012), 757-768.
[3] O. Hirzallah, F. Kittaneh, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl, 308 (2000), 77-84.
[4] F. Kittaneh, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys., 27 (1993), 279-285.
[5] W. S. LiaO, J. L. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6, 3 (2015), 191-202.
[6] W. S. LiaO, J. L. Wu, New version of reverse young and heinz mean inequalities with the kantorovich constant, Taiwanese Journal of Mathematics, 19 (2015), 467-479, https://doi.org/10.11650/tjm.19.2015.4548.
[7] Y. Manasrah, F. Kittaneh, A generaliation of two refined Young inequalities, Positivity, 19 (2015), 757-768.
[8] D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[9] Y. H. REN, Some results of Young-type inequalities, RACSAM, 114, 143 (2020), https://doi.org/10.1007/s13398-020-00880-w.
[10] M. SaBABHEH, Convexity and matrix means, Linear Algebra Appl, 506 (2016), 588-602.
[11] L. ZHU, Natural approachs of Young's inequality, RACSAM, 114, 24 (2020), https://doi.org/10.1007/s13398-019-00770-w.

