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ON APPROXIMATELY CONVEX AND AFFINE FUNCTIONS

ANGSHUMAN R. GOSWAMI AND ZSOLT PÁLES

Abstract. A real valued function f defined on a real open interval I is called  -convex if, for
all x,y ∈ I , t ∈ [0,1] it satisfies

f (tx+(1− t)y) � t f (x)+(1− t) f (y)+ t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|),

where  : R+ → R+ is a nonnegative error function. If f and − f are simultaneously  -
convex, then f is said to be a  -affine function. In the main results of the paper, we describe
the structural and inclusion properties of these two classes. We characterize these two classes
of functions and investigate their relationship with approximately monotone and approximately-
Hölder functions. We also introduce a subclass of error functions that enjoys the so-called 
property and we show that the error function which is the most optimal for a  -convex function
has to belong to this subclass. The properties of this subclass of error function are investigated
as well. Then we offer two formulas for the lower  -convex envelop. Besides, a sandwich type
theorem is also added.
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[28] J. MAKÓ AND ZS. PÁLES, Implications between approximate convexity properties and approximate

Hermite-Hadamard inequalities, Cent. Eur. J. Math., 10 (3): 1017–1041, 2012.
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