A THEOREM AND AN ALGORITHM INVOLVING MUIRHEAD’S INEQUALITY

JIA XU, YONG YAO AND XIAO LING QIN

Abstract. Let \(a, b \in \mathbb{R}^n \) be column vectors, and \((u, v)\) be the inner product of vectors \(u \) and \(v \) on \(\mathbb{R}^n \). Let \(G \subset \text{GL}(n, \mathbb{R}) \) be a compact matrix group. For \(A \in G \) and a continue function \(f \) on \(G \), the integral \(\int_G f(A)\,dA \) is the invariant integral of the compact group \(G \). In this paper, we study the inequality

\[
\forall x \in \mathbb{R}^n \quad \int_G e^{(Aa, x)}\,dA \geq \int_G e^{(Ab, x)}\,dA.
\]

We prove that the above inequality holds if and only if \(b \in \text{Conv}(Ga) \). This work follows a series of results, that is, Muirhead (1903), Hardy, Littlewood and Pólya (1932), Rado (1952), Daykin (1971), Kimelfeld (1995) and Schulman (2009). Furthermore, we construct an determining algorithm when \(G \) is finite. Compared with other effective algorithms, this one is symbolic and easy to implement on computer.

Keywords and phrases: Compact matrix groups, inequality, convex hull.

REFERENCES