A THEOREM AND AN ALGORITHM INVOLVING MUIRHEAD'S INEQUALITY

Jia Xu, Yong Yao and Xiao Ling Qin

Abstract. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ be column vectors, and (\mathbf{u}, \mathbf{v}) be the inner product of vectors \mathbf{u} and \mathbf{v} on \mathbb{R}^{n}. Let $G \subset \mathrm{GL}(n, \mathbb{R})$ be a compact matrix group. For $A \in G$ and a continue function f on G, the integral $\int_{G} f(A) d A$ is the invariant integral of the compact group G. In this paper, we study the inequality

$$
\forall \mathbf{x} \in \mathbb{R}^{n} \quad \int_{G} e^{(A \mathbf{a}, \mathbf{x})} d A \geqslant \int_{G} e^{(A \mathbf{b}, \mathbf{x})} d A
$$

We prove that the above inequality holds if and only if $\mathbf{b} \in \operatorname{Conv}(G \mathbf{a})$. This work follows a series of results, that is, Muirhead (1903), Hardy, Littlewood and Pòlya (1932), Rado (1952), Daykin (1971), Kimelfeld (1995) and Schulman (2009). Furthermore, We construct an determining algorithm when G is finite. Compared with other effective algorithms, this one is symbolic and easy to implement on computer.
Mathematics subject classification (2020): 26D15, 52A40.
Keywords and phrases: Compact matrix groups, inequality, convex hull.

REFERENCES

[1] R. F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters, Proc. Edinburgh Math. Soc., 21, (1903), 144-157.
[2] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
[3] R. Rado, An inequality, J. Lond. Math. Soc., 27, (1952), 1-6.
[4] D.E. Daykin, Generalisation of the Muirhead-Rado inequality, Proc. Am. Math. Soc., 30, (1971), 84-96.
[5] B. Kimelfeld, A generalization of Muirhead's theorem, Linear Algebra and its Applications, 216, (1995), 205-209.
[6] L. J. Schulman, Muirhead-Rado inequality for compact groups, Positivity, 13, (2009), 559-574.
[7] E. B. Vinberg, Linear Representations of Groups, Springer-Verlag, New York, 1989.
[8] L. Pontrjagin, Topological Groups, Princeton University press, Princeton, 1946.
[9] J. E. Goodman, J. O’Rourke and C. D. Tóth (Eds.), Handbook of Discrete and Computational Geometry, 3rd Edition, Chapman \& Hall Boca Raton, 2004.
[10] S. Boyd and L. VANDENBERGHE, Convex Optimization, Cambridge University Press, Cambridge, 2004.
[11] BAHMAN KALANTARI, Randomized triangle algorithms for convex hull membership, arXiv:1410.3564v1, 2014.
[12] B. Sturmfels, Polynomial Equations and Convex Polytopes, American Mathematical Monthly, 105, 10 (1998), 907-922.
[13] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.
[14] M. Joswig and T. Theobald, Polyhedral and algebraic methods in computation geometry, Springer-Verlag, London, 2013.

